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I. SUMMARY
The resulis of the investigations that received support from this grant
are described in research papers that have been prepared for publication. Copies
of these papers constitute Section II of this report and represeﬁt the technical
description of the results of the research. Each paper is listed below and
summarized in regard to technical content.
1. C. Harlow and C. L. Coates, "Féedback in Sequential Machine Realiza~-
tions,” Submitted for publication to the IEEE Transactions on Computers.

A condensed version appears in the Proceedings of the Second Annual

Princeton Conference, Princeton University, 1968, pp. 96-98, under the

title "On Feedback and Memory Elements."
Summary. This investigation considered the effect the ‘memory element
has on the feedback in a Sequential Machine. Three aifferent memory
elements are studi_ed ~ the unit delay, trigger flip-flop and set-reset flip-
flop. Methods are given for determining when a sequential machine can
be realized, using trigger or set-reset flip~flop memory elements, such
that the amount of feedback in the machine is given by a function f. In

- addition, it is shown that if a machine can be realized Wifh unit delay
memory elements with feedbaék ‘function f then the machine can be realized

with set-reset flip-flop memory elements where f is the feedback in the
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machine. Also it is shown that if a sequential machine can be realized
witﬁout feedback using trigger flip-flop memory elements then it cannot
be realized without feedback using unit delay memory elements, -The
converse statement is also true. The above results imply that the
feedback in a sequential machine depends on the memory element used
to realize the machiﬁe.

C. Harlow and C. L, Coates, "Inessential Errors in Sequential Machines,"”
Submitted to the IEEE Transadtions on Computeré. Condensed version

appears in the Proceedings of the Hawaii International Conference on

Systems Sciences, University of Hawaii, 1968, pp. 616-618,

Summary. State errors in sequéntial machines have been classified by
Hartmanis and Stearns as temporary and permanent. A subclass of the
permanent errors is called inessential and is defined as follows:
At some time the machine is supposed to enter state a but enters
state b instead due to a temporary malfunction. After this the state behavior
of the machine is error free. The error is inessential if any infinite input
éequenée yields only a finite number of outputs that are different from
those that would have. occurred had the state error not taken place.
State errors as described above are denoted by state partitions 1

ab

where a and b are the only two states in the same block of Tab® It has been

shown by Hartmanis and Stearns that for a Moore machine the state partition

HE =Z{Tab‘Tab is an inessential error} has the substitution property and
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that every Tap 1S an inessential error if and oniy if Tab < He. They have
also shown that state partition pairs do not characterize inessential errors.

The partitioh TIE is of interest since it contains all state errors that
cause only a finite number of faulty outputs. The definition given above
however, does not constitute an effective way to compute HE. This paper ‘
presents several results concerning II.E which imply a method for its
computation, An algorithm for determining HE is stated and illustrated by

means of an example.

F. O. Hadlock and C. L. Coates, "Realization of Sequential Machines

with ThresholdlElements, " accepted for publication IEEE Transactions on

Electronic Computers, 1969,

Summary. This paper presents an algorithm which, given a synchronous

sequential machine witﬁ completely specified state and output tables, yields
all code assignments for which the state variable and output variable func-
tions are 2-assumable., Since the condition of 2—ayssumab1'lity is necessary
and sufficient for linearly separability for completely specified functions of

fewer than eight variables, the algorithm yields all code assignments for

‘which the corres>ponding threshold gate realizations are one-level, For

other functions 2-assumability is a necessary condition. In these cases
the set of code assignments, if any, that yield.one—level threshold gate
realizations are contained in the set provided by the algorithm.

A. B. Howe and C. L. Coates, "Hazards in Threshold Networks, " IEEE

Transactions on Computers, vol. C-17, March 1968, pp. 233-251.




Summary. This péper is concerned with the study of logic hazards in
-threshold gate networks. Eichelberger has proved thét logic hazards are
not present in a sum~of-product (product-of-sum) realization which realizes
all of the 1(0) prime implicants of the given Boolean function. Logic;
gates of the AND or NOR (OR or NAND) variety realize single .1(0). prime
implicants; therefofe, a gate is required for’each 1(0) prime implicant to
be realized, and the problem of eliminating logic hazards is straightforward.

A single~-threshold gate, however, realizes a number of prime impli-
caﬁts. Moreover, the number of prime implicants realized by a network
that incorporates more than a single-threshold gate is not uniqugaly determined
either by the Boolean function being realized or by the number of g’ates
involved. As a result, it is often possible to control the prime implicants
and hence the hazards without greatly increasing the number of gates
required. In fact, in some cases no additional gates are required.

Three methods are presented for determining if a given threshold
realization contains any 1Qgic hazards, the first of which is an extension
of McCluskey's work. Two methods are then presented for synthesizing
logic hazard-free threshold reélizations. The first method is based on the
tree method of synthesizing threshold gate networks, whereas the second
method is based on expressing the given Boolean function as a sum of

threshold functions.



II. TECHNICAL RESULTS

FEEDBACK IN SEQUENTIAL MACHINE REALIZATIONS

INTRODUCTION
In this paper we shall study feedback in sequential machjnes that
are realized with either trigger or set-reset flip~-flop memory elements,
Previous studies (Reference 3) of feedback have tacitly assumed that the
memory elements were unit delays. The results in this paper show that
the different memory elements affect the feedback in the machine,

Before we proceed we need to state the following preliminary

< concepts.,

Definition 1, A sequential machine is a five tuple

M= ({s},{x},{03},6,1). Where
1. {s} is a finite set called the states of M,
2. {x} is a finite set called the inputs to M.
3. {0} is a finite set called the outputs of M.
4, § is a function with the domain of § a subset of {s}x{x}
and range a subset of-{s}. That is, 6:{s}x{x} - {s}.
5. A is a function with domain a subéet of {s}x{x} and

range {0}. Thus A:{s}x{x} - {0}.
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For our purposes A and {0} are not important and we suppose
the inputs to be n-tuples of {0, 1}. Frequently, we discuss partitions

on the states of a machine M. These partitions will be denoted by

Greek letters. A definition and an example of this concept follows,

‘Definition 2. A partition p on a set {s} is a collection of sub-

sets of {s} such that

1. U A= {s}
Aep

2, If A and B are in p, then ANB = ¢,

Example. If {s} = {1,2,3,4,5}, then a partition p is given by
p={{1.2}, {3,4} ,{53}}. It i3 more convenient, however, to use the
notation p = (ﬁ;ﬁ;g) .. The subsets of p are often called blocks of
p. For example, T—,—Z— is a biock of p. When we discuss partitions we
. frequently need to discuss their blocks. If p is a partition on a set {s}
aﬁd if ac{s}, then pla] will denote the block of p which contains a. In
the above example p[3]’= 3,4,

A trigger flip-flop is the two state sequential machine specified
in Figure 1. A particular input ‘;o a trigger flip-flop will be denoted by T.

6(s,T)  A(s,T)
‘ 1 0 {s} = {1,2} states

{x} = {0,1} inputs
{0} = {0,1} output

N N = = W0
- O = O
(W

2
2
1

ot

Figure 1
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If. we are discussing more than one trigger flip-flop, we will index them
with integers and refer to the ith flip-flop with input Ti where i is an
integer.

A set-reset flip-flop is the two state machine specified in Figure
2. A set-reset flip~-flop has 2 inputs., A particular input will be denoted
by (S,R) where S is called fhe set input and R is called the reset input,
Again if we are discussing more than one set-reset flip-flop, we shall
indéx them with integers and refer to the ith flip~flop with inputs Ri and

Si where i is an integer,

s 8 R  6(s,S,R)  A(s,S.R)
1 0 0 1 0
1 0 1 1 {s}={1,2}
1 1 0 2 0 {x} = {0,1}x{0,1}
2.0 0 2 1 {0} = {0,1}
2 0 1 || 1 1
2 1 0 2 1
Figure '2

In order to realize a machine M, it is necéssary to code the
_states of M into n tuples of {0,1}. The coding function will be called
h and h:{s} - {0, 1}n is a 1-1 function. The it projection of h will be
calleq hi; that is, for every state hi(s) =y, where h(s) = (yl, PN ARREY Yn)
and A is in {0,1}, It should be nbted that our concept of a realization
and that of Reference 3 are not the same in thét we do not expand the

machine.
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We are often interested in subspaces of {0, 1}n. To be s‘pecific,
let n=25, (Yl’ .o .,yn) =(0,1,0,1,1) is in {0, 1}5. We want a general
way to refer to specific coordinates of (yl, cees yn), say coordinates 3
and 5 where (y3,y5) = (0,1) an element of {0,1} 2 . We will use the
following formalism to do this. IfA < {1,...,n}, we let {0, l}A be {0, 1}-].
where j is the number of elements in A, Ify= (yl, .o ,yn) e{0, 1}n, we

denote by YA the j tuple (yil, ves 'Yi.) e{0, 1}A where i, < i, <« -<ij and
]

1 2
il' 12, ces ,ij are all in A, In the above example A = {3,5}, {0, 1}A={0, 1}_2
and wheny = (yl, ces ,yn) = (0,1,0,1,1), then Yy = (0,1) {0, l}A,

If we are given a coding function h:{s} - {0, 1} " for a machine
M, we can associate the following partitions with it, For every
ie{l,...,n} we define the partition p; by pi[a] = pi[b] iff hi(a) = hi(b)'
We call 0, the partition associated with hi' Conversely, given a two
* block partition p,ona machine M we can define a function hi on {s}
such that hi(a) =1 if a is in block 1 of Py and hi(a) = 0 if a is in block
2 of Py- This hi will be called the function associated with Py If there
are n such oy then h(a) = (h'l(a), .oy hn(a)) is 1-1 if IIII1 P, = g the zero
partition., Often we are given A < {1,...,n} and we want to discuss
hA(a) for a e{s}. It should be noted that if T = % o then 7 [a] = 7 [b]
implies that hA(b) = hA(a) .

If we code a machine by h into {0,1}", then h need not be onto.
We denote by Yi a function such that Yi:{O, l}hx {x} - {0,1} and
Yi(h(a),x) = hi(é (a,x)) for every a e¢{s} and xe{x}. Thus, Y, is an ex-

- t
tension of the i h next state function to all of {0, 1} n
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A problem in many of our results is filling in the "don't care"”
terms propérly. In the results pertaining to unit delay realizations this
is fairly easy. But when one considers flip-flop realizations, the
situation is more complicated, This is the reason for much of the com-
plexity in some of our proofs relating to regiuced dependence. With this

in mind we state some results given in Reference 3,

Definition 3, Let M = ({s},{x}.{0}.6,1) be a sequential

machine., Lett and p be state partitions and let f:{s}x {x} - D be
some function where D is a set. We say 7 "pf"p iff _fof every two states
a,b such that t{al = v[b] and for every input x such that §(a, x) and

§ (b, x) are specified andrf(a,x) = f(b, x) then pls(a. x)] = pls(b, x)1..

The next theorem relates the relation pf to unit delay realizations.

" Result 1 (Theorem).

Let M be a machine coded by h into {0, 1}n.‘ Also, let ¢ = S\I'pi
where A < {1,...,n} and let p = Py where ge{l,...,n}. Thent"pf"p

iff Yg(h(a)',x) = Fg(hA(a), f(a,x){x) when §(a, x) is specified.

Proof.

i) Suppose t"pf'p. Define Fg as follows. For every (yA, d,x),
where de D aﬁd y;e {0., 1} for every i in Alet Fé(yA, d,x) = hg[é (a, x)] if
there exists a e'{ s} such that §(a, %) is specifigd and (hA(a), f(a, %))
= (YA'd)' Show Fg is well éefined. If there exists a,b e{s} such that
s(a,x) and §(b, x) are specified, T [a]l = v [b] and f(a, x) - f(b, x) then

pg[& (a,x)]= pg[& (b, x)] which implies hg[6 (a,x)] = hg[é (b, x)]. Hence,
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Fg is» well defined, ‘ For all (yA, d, x) such that there is no a e{sj »and
input x such that (hA(a), fla,x)) = (yA, d) then Fg(yA' d, x) can ‘be speci-
fied in any manner.

ii) Suppose hg[6 (a,x)] = Fg(hl\('a)' fla,x),x%). Let a,b e{s} such
that §(a,x) and §(b, %) are specified, tlal = v[b] and f(a, x) = (b, x).
Since t[al] = T-[b] implies hi(a) = hi(b) for every ieh, this implies from the

hypothesis that hg[6 (a,x)] = hg[é (b, x)] which implies pls(a, x)] = pls(b, x)2. ||

Definition 4. Let M be a machine and v a state partition of M,

1 — o rn i+l = 1 i
then mpf(fr) = (p|r"pt p? and m () mpf(mpf(’r)).

Our mpf is the same as the m operator of Hartmanis and Stearns.
We now give the result of Hartmanis and Stearns on feedback which we

shall not prove, We do not use this result except to relate flip-flop

realizations to delay realizations,

Result 2 (Theorem).

Let M be a g state sequential machine and let f:{s}x{x} - D.
Then M can be realized using f for feedback iff mggl(l) =g, 1Iisthe

unit partitions.

Feedback and Trigger Flip-Flop Realizations

In order to determine when a function f can be used as feedback
in a machine M realized with trigger flip-flops, we define the following
relation, The definition of what we mean by the expression "using f for

feedback" will be given later.
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Definition 5. Lett and p be state partitions on machine M and

f:{s} x {x} - {0, 1}'{' where £ is a positive integer. Then ~"tf"p iff

1, p is a two block partition

2. 7-p"pf"p

3. For every 2 states a,b and for every input x such that 6§ (a, x)
and §(b, x) are specified, tlal = ¢[bl, plal # plb], and f(a., x) = f(l'),X)

then pls(a,x)] # pls(b, x)].

If we have a machine M and a function f:{s} x {x} - {0, 1}'?’ and
if we code M with h into {0, l}n, then we can define a function f' on
{0,1}" by ' (h(a),x)= fla,x). If h is not onto {0,1}", then we extend
f' in any manner to all‘ of {0, l}n. We make no distinction between £
and ', It might .be notea that we use the set {0, l}L rather than D for
the range of f. We do this because we are interested in a realization
which can be realized in a practical since. In other words_ the output
of f will be fed into logical gates, hence, it is convenient to consider
the outputs as n tuples of {0,1}. It is necessary to prove the next two
results before we can characterize feedback in triggér flip-flop reali-

zations,

Result 3 (Lemma).

Let machine M be realized with the gth memory element a trigger
flip-flop where h:{s} - {0, 1}n is the coding function and g ¢{1,...,n}.
If

i) £{s} x {x} » 0,13  and A < {1, ....n} with g¢A.
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y = + v
ii) Fg(y,x) ng(yA. fly, %), %) ’ygN(yA, f(y, x). x) for every
X e{:k} and ye{0, 1}n with M = N.

Then T X)) =G , By, x),.x).
g(y ) g(YA (v, %), %)

Proof.
= - n
Since T ,X) = Y , X))+ Y , %) for ever 0,17 and
g(y ) Vg g(y ) Vg g(y ) yye{0,1}
for every x e {x}, if we substitute for Yg and simplify we get that
4 = M ’ f Is 1 + y 1 f ! { . i = -I i
Tg(Y x) Yg (YA (v, %), %) yg N(yA (y,x),x). Since M = N, this

implies Tg(y,x) = Nly

e Ty %)% I

Result 4 (Lemma),

Let machine M be coded by h into {0, 1}n. Let 7 =IE Py where
A<{l,....n}, letp= pg where g e{1,...,n} and let f:{s}x{x}a{O,l}{'.

If 7"tf"p, then Tg(y, x) = Gg(yA, fly, x),x).

Proof.
Since 7 "tf"p, we know that t.p"pf"p and from Result 1 this
implies that Yg(y, x) = Fg(yA,yg, f(y.x),x) for every y in {0, 1}n.
i) Suppose geA. Then since T (y,x) = Y (v, x)+53 Y (y.%),
) Suppose g g(y ) ¥ Y ¥ Yg g(y

we deduce that T ,X)=y F Y LEly. %), x)+y F Y . fly.x). x
g(y )=y g(YA Yy (y ) Yg g(yAy (y )

g g

= Gg(YA’ fly, x), x).
ii) Suppose ggA. Then Yg(y,x) = ng(yA, f(y. x), x)
+ §gN(yA, f(y, x), x) where M(yA, d,;{) = Fg(yA,yg =1,d, x) for every
L
1 1 I 7 = ra
de{0,1}” and Nly, . d, %) Pg(YA
certain freedoms on Fg. Namely, Fg(hA(a), hg(a), f(h(a) . %), x) = hg[é(a, x)]

yg = 0,d,x). Recall that there are

if §(a,x) is specified. Otherwise, Fg(yA,yg,d,‘x) where d ¢{0, 1}*/ is
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‘ .
arbitrary. Specify Fg as follows. If Pg(yA, yg,d, x) is not determined

as above, let Fg(yA,yg,d,x) = f—‘g(yA,'{zg,d,x) where d ¢{0, 1}{’, vy {0, l}n
and x e{x} . Show Pg(yA,yg,_d,x) # Fg(yA,S}g,d,x) for all y {0, 1}n’
xe{x} and d ¢{0, 1}{’. We must only consider the case where there
exists a,b, e{s}, x e{x} such that hA(a) = hA(b), hg(a) # hg(b), fla, x)
= f(b,x) and 8(a,x) and §(b, x) are specified. In this case Pg(hA(a),hg(a),
f(h(a), %), %) = hg[6 (a,x)]. But hA(a) = hA(b) implies that t[al = 1[b] and
hg(a) # hg(b) implies that plal # plbl. Since f(a,x) = f(b, %), §(a,x) and
5 (b, x) are specified and T,"tf"p’ this implies that pls(a,x)] # pls(b, x)]
and therefore that hg[é (a,x)] # hg[é (b, x)]. Thus, Fg(hA(a), hg(a), f(h(a), %), x)
#Pg(hA(b), hg(b), f(h(b), %), x).

Show M = N if ch is so specified. This is clear since M(yA,d,X)
= Fg(yA'yg =1,d,x)# Fg(YA'yg =0,d,x) = N(yA,d,x) for every ¥ with
‘ Yy e{0, 1}1’ for every ieA, xe{x} and d e{O,_l}L. From Result 3 this

implies the theorem., ||

Result 5 (Theorem).

‘If machine M is coded by h into {0, l}n and realized with trigger
flip-flop memory elements such that Tg(y, x) = Gg(yA, 1(y. %), x) where

A<{l,...,n}andge{l,...,n} and £:{s} x {x} - '{0,1}4”, then 7 "tf"p

where 7= Il p,and p = .
1 p;andp=pg

Proof,
i) Suppose geA. Then t"tf"p is equivalent foT“pf"p since
>t. Ingeneral, Y (v, x)=v T (v, x)+ v T{y, %) thus Y (y, %)
p>T g g(y Yy g(y )_ R (y,x) g(y
=y G £ ,5( X+ v G My, x),x)=F ,f(y.x).x). Therefore
Yg g(yA (y,x), %) Vg g(yA- (v.x), %) g(yA (y )

from Result 1 ¢"pf"p .
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ii) Suppose g#A. Then again Yg(y, x) = ygég(yA, fly, x). x)

+ §gGg(yA,f(y,x),x) = Fg(yA,yg,f(y,x),x) and therefore from Result 1
t.p"pf"p . Leta,bef{s} and x e{x} such that v[al = 1[bl, plal # plbl.
f(a,'x) = f(b,x), and &(a, x) and &(b, x) are specified. 7lal = 1[b] implies
that hi(a) = hi(b) for every iel and pla) 7-[ p[b] implies that hg(a) # hg(b) X
Assume hg(a) = 1 which implies hg(b) = 0, Then Yg(h(a),x) = ég(hA(a),
f(h(a), x), x) and Yg(h(b), x) = Gg(YA Ly, %), x). But since (hA(a) cf(h(a), %), %)
= (hA(b),f(h(b),x),x), this implies that Yg(h(a),x) = ?g(h(b),x) . Since
8(a,x) and §(b, x) are specified, this means that hg[é (a, x)] # hg[é(b,x)]
which implies that pls(a,x)] # pls(b, x)]. The same argument yields the

same result assuming hg(a)‘= 0 which implies hg(b) = 1. Therefore +"tf"p, ||

With these resul’és out of the way we can consider feedback in
‘machines realized with trigger flip-flop memory elements, First we
must define this concept. The basic idea is to lay the machine out from
left to right in such a way that the input function to the ith flip—-flop can
be computed from f and the state of that portion of the machine which lies
to the left of the ith flip-flop. This is shown in Figure 3., It should be

noted in the figure that the set of Ar—Ar_ flip-flops consists of those

1

flip-flops i such that 1eAr—Ar_1 .

Definition 6, Let M be a machine and f:{s} x{x} = {0, 1}L.
Then M can be realized with trigger flip-flop memory elements‘ using f

for feedback iff M can be coded by h into {0, l}n such that
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1. There exists {All ces ,Ak} a set of positive integers such

that u< v implies A < A__,
u v

2. If icA, ., then Ti(y’x) = Gi(f(y,x),x) for every ye{0, 1}n

1

and xe{x}.

3. If ieh-A__, where 1 <r<k, Ti(y,x) = Gi(yAr_l,f(y,x),x).

1

4. 11 o = 4 where o, is the partition associated with hi'

A
_.In,mﬂl'
< e ,}» , - 7
A o/ N NN
5\ Fho~ o 2 - 0 >l -
Pi"ﬁs ' ps I‘/o'DS'
!
i I C.L
'y, ‘v <
“C.L. denotes combinational logic ' F
Figure 3

It should be noticed that our definition of feedback depends on
the memory element used, In order to prove the important theorem of this

section we define the following quantity and prove a property about it.

Definition 7. Let M be a machine and + be a state partition of M,
i+l
tf

1, i, \
Then mtlf(,r) = T{p |T"tf"p} and m.,. (¢) = mtf(mif(fr)) for every integer i.
If {p lrr"tf"p} = ¢ the empty set, we define mif(q—) = I the unit partition,
We frequently designate m;'clf(rf) by mtf('r) . It should be observed

that + and mtf(rr) are not in the relation "tf".
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Result 6 (Lemma).

If .7, and p are state partitions such that v, <t and 7 "tf"p

1
where f:{s} x{x} - {0, 1}1’ then 1

1

1t‘fp.

Proof,

Let q-l[a] = «rl[b]; Then rlal = 7 [b].since >71,. If plal = p[bl,

1"
fla,x) = f(b, x) and s(a,x) and §(b, %) are specified then pls(a, x)
= ols(b,x)] since r.p"pf"p. 1If plal # plbl, f(a,x) = f(b, %) and s(a, %)

and §(b, x) are specified then pls(a, x)] # p[s(b, x)] since 7"tf"p. ||

Result 7,
Let M be a machine and f:{s} x {x} - {0, 1}&. If ¢ and T, are

state partitions such thatt, <t then mtf(rr 1) < mtf(T) .

Proof,
Let p be such that v+ "tf"p then Tl"tf"p from Result 6, This

implies mtf(Tl) < mtf(T)' I

" Result 8,
. ’ 4 i+l
Let M be a machine and f:{s} x{x} - {0,1}". Then M (1) <

m‘tf(T) for every ie {1,2,...}.

Proof.

. 2 1 1 1
i) Show mtf(I) < mtf(I) . Clearly mtf(I) < I. Thus mtf[mtf(l)] <

2 |
mtf(I) from Result 7 which implies mtf(I) < mtf(I) .

. it1 i it+1 i
ii) Suppose m, (10 < mtf(I) . Then mtf[mtf (0] 5 H}tf[mtf(l)]

it+2

.

i+
from Result 7 and therefore mifz(l) <m
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(1) = mif(I) . Therefore

. . i . it] i+2
It is clear that if mtf(]f) = m (I). then m ¢

t
since‘ I can be refined at most g-1 times if M is a g state machine we
g1, _ @ |

know that m ¢ (D) mtf(I) .

It should be noticed that mtf('r) is a fairly difficult quantity to
calculate. At this point we must consider every two block partition p
and see if 7"tf"p and multiply these p together. Later we will give a

better method, But first we prove a major result and then give an

example of some of these concepts.,

Result 9 (Theorem).

Let M be a machine and f:{s} x{x}' - {0, l}/('. M can be realized
with trigger flip-flops using f for feedback iff m?f—l(l) = ff where q is the

number of states of M,

Proof,
Suppose M can be realized with trigger flip-flops using f for
feedback. Then M can be coded by h into {0, 1}n such that Definition 6

is satisfied, Let = Lo "
TR P

1., From 2 of Definition 6 and Result 5 I"tf"pi when ie:l\r and
Py is the partition associated with hi' This implies that m:f(I) < 1'1{ pj

and mtf(I) <7
2, From 3 of Definition 6 and Result 5 I;I\ pj"tf"pi for every
- Tr-1

This together with Result 6 implies that II ."tf"pi; that

ieA ~A
r - 1 3

1.

s, v 4 ’t’f-pi for every 1eAr.
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3. From 1 we know mtf(I) <7 for every

-1
1" Assume m, . (1< L

r such that 2 < r < k where k is given by Definition 6. Show mif(l) ST

= s : . r-1
From 2 mtf(frr__l)s_ll;l p; = 7,- From the inductive hypothesis Toq 2 My (1)

and therefore, from Result 7 we deduce that mtf[mgl(I)] gr or equivalently

r
mtf(I) <.

4, Show mq—l(I) = ff, From 4 of Definition 6 Il p, =+, = f.
if A i k

Hence m]:f(l) ST T 4. Therefore m:‘_(f(l) = g, TFrom the comments after

Result 8 this implies that m?f—l(l) =g.

g-1
tf

m}ff(l) =f. Thenk< g-1,

Suppose m () = g. Let k be the first integer such that

1, Let E, = {pif ieAl} be a set of partitions with the properties

that I;Itf"bi for every iel

1 and III\ Py = mtf(I)’ Such a set exists since

1
{p|I"tf"p} has these properties. However, it should be noted that one

may not need to include all of these partitions in E1 .
2. Let Ez = {pi]ieAz} be a set of partitions with the properties

that E. > E

. n 11 ) —— 2 »
2 X mtf(D tf Py for every 1eA2 and lRZpi mtf(I). Again such

a set exists since EZ = {p]mtf(l) "tf"p} has the required properties.

This follows from the fact that mff(I) < mtf(I) .
3. Let Ek = {pi[ ieAk} be a set of partitions with the properties

that E, > FE

k—l Harn .
K ;M (D)"f Py for every ieh

. _ _k
and% P, = mtf(I). The set

k
—~ k-1 (w3 s . s : k
E, = {p ]mtf (1)"tf"p] satisfies these properties since mtf(I) <m

k-1 k

k-1
.

Again it should be noted that one may not need to include all these

partitions in Ek .
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4. For every i such that ieA, , let hi(a)r = hi(b) e pi[a] = pi[b];

k

i.e. let hi be the function implies by Py Since II Py = m]:f(l) =g, h
: Ay

: J

is 1-1, Note that the range of h is {0, 1} K. Thus if we let n be the

, _ , , n
number of elements in A, , to be consistent in notation, then h:{s}-{0,1} .

kl

5. From Result 4 since I" 1:f"pi for évery ieAl we know that

Ti(y,x) = Gi(f(y,x), x) for every y ¢ {0, 1}n. Also from Result 4, since

1

— r- r_l Mo .
Ar_lpi m, o (1) and m . (D) "tf Py when 1eAr, we know that Ti(Y, x)

= Gi(yA , Hly, %), x) for every ieAr. Therefore, Definition 6 is satisfied
r—

and M can be realized with trigger flip-flop using f for feedback. ||

An example of this result is given in Figure 4 by machine A,
{s} ={1,2,3,4,5} and § is given in the figure. Also a function
f:{s} x{x} -» {0,1} is given in Figure 4. In machine A I"tf"(1,2;3,4,5)

and mtf(I) =(1,2:;3,4,5) since this is the only partition with this property.

m:m)"tf"p iff p is one of (1,2:3,4,5),(1,4;2,3,5) or (2,4;1,3,5)
and therefore mff(l) = (_1—;-2.;?,*5_;—4—) . (T;E;ﬁ;@"tf"p for every two block
partition p and therefore mf’f(l) = g which implies p can be realized with
trigger flip-flops using f for feédback. Let Py = (ﬁim),
Py = (1,4;2,3,5) and Py = (1,2,3,4:5). Then A= {11, A, = {1,2} and
I\‘3 = {1,2,3} satisfies the properties given in the proof of Result 9.
In this case E, = {pl}, E, = {pl, pz} and E3 = {pl, Py p3} . A coding
function h corresponding to Py pz and Pa is given in Figure 4.

If a machine can be realized using f for feedback and f is a con-~

stant, then we say f can be realized without feedback. Machine B in
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Figure 5 gives a machine which can be realized without feedback using

trigger flip-flops when f is any constant function, Note that 1"tf"p iff

p =1(1,2:3,4,5) and (1,2;3,4,5)"tf"p iff p = (1,3,4;2,5), (1,5:2,3,4) or
(1,2:3,4,5) and finally (1;2;3,4;5)"tf"p for every g which is a two block

partition. Therefore m,:f(I) =(1,2;3,4,5), mff(l[) = (_1—;-2_;3,4;-5) and m,?f(I) =f.

Inputs Inputs
0 1 0o 1
191 3 11 0 0
21l 3 4 21 1 0
States 3 4 1 States 3 0 1
a1l s 2 4 o 1
541 1 2| 501 0
() f
Machine A
[ = = ~ -+
h(]-) (OI 0, O) Tl(ylly21y3lx) Xf(Yl:Y2:Y3,X) X
h(2) = (0,1, 0) Tz(yllyz,y3,X) ¥; f(ylryzly3,><) Xy,
h(3) =(1,1,0)
= + y. Xy, + y.X
h(5) = (1,1,1) Y XY, ¥ X f(yl,yzly3,X)
0 1 0 1 0 1
1 000 000 110 000 110 0 0
2 010 110 100 100 110 1 0
3 110 100 000 010 110 0 1
4 100 111 | o010 011 110 0 1
5 111 000 010 111 101 1 0
Y T - f

Figure 4,
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Inputs
0 1
1 {f s 2 h(1) = (0,0, 0)
2 {3 1 h(2) = (0,1, 0)
States 3| d 4 h(3) = (1,1,1)
4111 3 h(4) = (1,1, 0)
54 2 5 h(5) = (1,0, 0)
Machine B.
Inputs Inputs
0 1 0 1
000 100 010 100 010
010 111 000 101 010
111 d 110 d 001
110 000 111 110 001
100 || olo 100 110 000
(v, /¥y, ¥, (T}, 7,0 Ty)

T (v, /v, Yy ®) =X

T,y ¥, ¥ ¥) = Xy, + Xy,

Ty ¥, ¥y X) = ¥,y X+ 2y,
Pigure 5.

Now we relate feedback for the unit delay case to feedback with
trigger flip-flop memory elements. One result we get is that the set of
machines which can be realized without feedback using unit delays and
the set of machines which can be realized without feedback using trigger
flip-flops are disjoint when the machines are completely specified.

Before we prove this result we consider a lemma.
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Result 10 (Lemma).

Let M be a machine, f:{s}x{x} - {0, l}l’ and 'r."tf"p. Let
a,b e{s} such that v[a]l = t[b]. If there exists x e{x} such that f(a, %)
= f(b,x) and §(a,x) = (b, x) then mtf(q-)[a] = mtf('r)[b}.
Proof.

Consider any p such that t"tf"p. .If plal # pIb] then pls(a, x)]
# ols(a, x)] which is impossible since §(a,x) = 6§(b,x). Thus plal = plb]
which implies mtf(T) [al = mtf(fr)[b].

If §:{s}ixix} - {s} and {Xi}? is a sequence in {x},we define
s(a, {xi}rll) =aifn=0, 6(3'{}{1}?) = a(a,xl) ifn=1landifn>1 we
inductively define s(a, {xi}?) = sls(a, {Xi}rll~1),xn] . With this notation

we can prove the following result,

Result 11 (Lemma).

Let M be a completely specified machine and f:{s}x{x} - {0, 1}1’.
Let there exist a,b e¢{s} with a # b and a sequence {xi} ;I“l with g > 2
in {x} such that s(a, {xi}jl) and s§(b, {xi}jl) are specified when 1< j< g-1
and, in addition, fls(a, {xi}jlhl),xj] = f[5(b, {xi}i— l),xj] for every j such
that 1 < j< g-1. Then mggl(l) = ff implies that m?f—l(l) # 4.
Proof.
Since I[al] = 1[b], the hypofhesis implies that m; f(I) [al = m; f(I) [b]
for all j< g-1, Thus mggl(I) = f and the hypofchesis implies that §(a, {xi}(f—l)
= §(b, {xi} ;I_l) . Letrbe t}{e first integer such that s{a, {xi}i) = (b, {xi}li) .

Then 1 <r<g-landifa, = sla, {Xi}i—l) and b. = 5(b, {xi}rl'_l) then a; # bl

1 1
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_ i _ .
and 6(a1,xr) 6(b1,xr). Show mtf(I)[al] mtf(I)[bl] for every j such
that j is a positive integer. Clearly I[al] = I[bI] and since f(al, Xr) ‘
= f(bl,xr) and 5(a1,xr) = 6(b1,xr) from Result 10 this implies that

_ k _k .

mtf(I)[al] mtf(I)[bl]‘ Suppose mtf(I)[al] = mtf(I) [b1]° Again from

. . k _ k k+1
Result 10 this implies that mtf(mtfm)[al] = mtf(mtf(l))[bl] or m (I)[al]

k+1

=m (D[bl]' If we let j = g-1 then m

a, # b1 . Therefore mgf—l(]i) #4.|

q_1(1)[611] = m?f—l(l)[bl] where

tf

From Result 11 we get the following result on feedback free

machines.

Result 12 (Corollary).

Let M be a comp;etely specified sequential machine with gq
states and g > 1,

) If mggl(l) = 4, then mff"l(x) #4.

i) If mgf—l(I) =, then mg'f'l(l) # 4.

In particular, the set of machines which can be realized without
feedback using unit delays is disjoint from the set of machines that can
be realized without feedback using trigger flip-flop memory elements.
Proof,

i)  Since q > 1 there exists a,b e{s} such that a # b. Let

' {xi} (11_1 be any sequence in {x}. Since f is a constant, Result 11 holds
and m?f—l(l) 0. '

ii) Suppose mg-f—l(l) = g, then from i) m,?f—l(I) # @ which is a
~contradictiqn. Therefore mg'f-l(I) =g.

The last statement follows from Results 9 and 2.||
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It is clear Result 12 does not necessarily hold if the machiﬁe
is not completely specified, For example, one could consider a mac;hine
where §(a,x) is not specified for any state a and input x. We now turn

(r).

our consideration to the computation of mtf

Definition 8. Let M be a machine and f:{s}x{x} - {0, 1}L.

Let v be a state partition,

1. Let A(r) = {(b,c)|r[b] = v [c] and there exists x such that
f(é,x) = f(b,x) and s(b,x) = 5(c,x)} U {(b,c)| there exists a e{s} and
input x such that f(a, x) = f(b, %), v[al = r[b] and c = §(a, x) while
a=58(b,x) or §(a,x) = a and s(b,x) = c}.

2. Let A#(rr) be the smallest equivalence ciass which contains

A(r) and let 51 be the state partition implied by A#(fr) .

. Result 13,

If r and g, are defined as in Definition 8 then By < mtf(T) .
Proof,

Let b,c e{s} such that Bl[b] = Bl[c]. Let p be a partition such
that Tlitf"p. .

i) Suppose (b, c) eAlr). If vIb] = ¢ [c] and there exists x such
that f(c,x) = f(b, %) and s(c, x) = §(b, x) then p[b] = plcl ffom Result 10,
If there exists a e{s} and x e{x} such that f(a,x) = (b, x), v[al = +[b]
and ¢ = §(a,x) while a = §(b,x), then if plal = p[b]l we have that
ols(a,x)] = pls(b,x)] since rv.p"pf"p or plcl = plal = plbl. 1f plal

# p[bl, then pls(a.x)] # pls(b, x)] or plc] # pla]l which implies plbl = plc]



25

}
since p has only two blocks. Therefore plb] = plcl. The proof for the
case a = §(b,x) and §(b,x) = ¢ is identical.

ii) Suppose b = a,c=a k > 0 and (ao,al),(al,a

k+1 2[._0.1

(ak,ak+1) are all in A(r). Then from i) p[ai] = p[ai+1] for every i

1=plcl.

0<i<k. Since p is a partition, this implies p{b]=p[ao]=p[ak+l
Cases i, ii cover all cases for b and ¢ such that Bl[b] = Bl[c]
except when b = ¢ which is obvious. Thus Bl[b] = sl[c] implies

plb] = ple] for every p such that v "pf"p. Therefore mtf(T)[b] = mtf(T)[C] .

This implies that g, < mtf(fr). I

It should be noted that A(r) can be determined by inspection.
One has only to observe that (b, c) ¢ Alr) if 6(b,x) = 8 (c, x) for some x
with f(a,x) = f(b,x) or if any two of a,b, sf(a,x), §(b,x) are equal

when tlal = 7[b] and f(a, x) = f(b, x) then the other two are a pair in Alr).

Definition 9. Let M be a machine and let 7, Bi be state partitions

such that mtf(T) >p; where i> 1,

1. LetB(g)= {(Bi[b], si{c]) |7[b] = 7[c] and there exists input x
such that f(b, x) = f(c,x) and Bi[-s (b, x)] = ?1[6 (c.x)1} U {Bi(b), si(c))\ai(c)
= Bi[ﬁ (a,x)] and Bi[a] = Bi[é (b, x)] or Bi[a] = Bi[é(a,x)] and Bi[C] = Bi[é (b.x)].
for a,b e€{s} and x ¢{x} such that r[a] = r[bl, f(a,x) = f(b,x)}.

2. Let B#(Bi) be the smallest equivalence relation which contains
B(Bi)' Let Bir1 be a partition on {s} defined by ai+1[a] = Bi+1[b] iff

(6,fal, p,[B) ¢ B¥(p)).
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Result 14,

By Smylr) and g, >8,.

Proof,

Let b,c e{s} such that Bi+1[b] = Bi+l[c] which implies that
(B i[c], Bi[b]) € B#(B i)_' Let p be a partition such that 7 "pf"p.

i) Suppose (8,[cl, g,[b]) e B(g,). If r[b] = rlc] and there exists
x such that f(b, x) = f(c, %) and Bl[a (b,x)] = Bl[é(c,x)], then pls (b, x)]
= pls(c, x)] since p > B,. Because r1"tf"p, o[b] # plc] implies
pls (b, x)] # plslc,x)], which is a contradiction, thus p[b] = plc]. If
there exists a e{s}, x e{x} such that ¢[a] = ¢[b], f(a,x) = £(b, x) and
Bi[C] = Bi[é(a,x)] while Bi[a] = Bi[ﬁ (b, x)}; then plal = pls(b, x)] and
plcl = pls(a, x)] since p > By If plal = plbl then pls(a. x)] = pls(b, x)]
since 7.p"pf"p which implies plal = pls(a,x)] = plcl. Therefore p[b]
" =ole). 1f plal # oIl then pls(a,x)] = pls(b,x)] since t"tf"p. This
implies plc] # plal and .therefore p[b] = plc] since p has only two blocks.
Therefore (Bi[c], Bi[b]) c B(Bi) implies p[b] = plc]. The case when Bi[a]
= Bi[é(a,x)] and Bi[c] = Bi[é (b, x)] is proved in a similar manner.

ii) Suppose Bi[C] = Bi[ao], Bi[b] = Bi[ak_H] and (Bi[ao], Bi[al]),

(Bi[all, Bi[az]). . .(Bi[ak], Bi[a 1) are such that (Bi[aj]’ Bi[aj+1] € B(Bi)

k+1

when 0 < j < k. Then from i) p[aj] = p[aj+1] for every j such that

0 <j< k. Therefore plcl] = p[ao] =pla, 1= p’[b].

k+1
Parts i, ii imply that if (Bi[c], Bi[b]) € B#(B i)' then p[b] = plc]

which implies that mtf(T)[b] = mtf(T)[c]. Therefore mtf(T) 2B
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Results 13 and 14 imply a way to compute mtf(T) . First compute
By a@s in Definition 8. Then using By compute B, as in Definition 9,
Continue until Bi+1 = Bi for some i > 1. This must happen since
Bitl > Bi for every i and {s} is finite. Let o(r) = Bi' One must then
consider only thos’e p >0(r) to see if T"tf".p when one computes mtf(T) .
For an example of this consider machine A in Figure 4, Here
it is seen by inspection that A1) = {(3,4),(4,5),(3,5)} which implies
A¥(0 = 10,0),2,2),(3,9), (4,9, (5,5, (3,4, (4,5), (3,5), (5, 9). (5, 4),

(4,3)} and By = (1;2:3,4,5). By could have been easily determined

from A(I). Now compute B,y Again by inspection of Figure 4 B(Bl)

= {(T;E)} and B#(Bl) = {(.1—;—2-),(3,4, 5:;3,4, 5),(?;7),6;-’1),(2_;—2—). Therefore

Bz =(1,2;3,4,5). Compute By- By inspection B(BZ) = ¢ and therefore

B#(BZ ~1(1,2,1,2),(3,4,5,3,4,5)}. Hencep, = (1,23,4,5) =5, and

therefore (1) = By From Results 13, 14 we know that 6(I) < mtf(I)’

Hence to compute mtf(I), we need only consider all 2 block state
partitions p such that p > ¢(I) and an easy check shows I"tf"g(I) and
hence mtf(I) = m;m) . We have made this computation longer than
needed, B(Bi) can be written down by inspection of the state table and
Byyq CaN be written down directly from B(Bi) without looking at B#(éi) .
Let us again consider machine A in Figure 4, We have already
determined that when we begin with T then ¢(I) = (Em . Repeat the
calculations this time begivhning with v = 8(I) .. Then by inspection A(t)
= {(3,5)} and By = (1;2:3,5:4). ‘Continuing B(B 1) = ¢ and therefore B,

=8 Thus when we begin with ¢+ = ¢(I) we get o(r) = 6(a(1)) = (1;2:3,5:4)
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which we label as 82(1). ez(I) must be less than mff(l) . Repeat the

62(1). By inspection of Figure 14 Alr) = ¢ and

1l

process letting «

therefore By =B, = (1;2:3;4;5). Thus glr) = e(ez(I)) = 93(1) = (1;2;3:4:5) .
And 63(1) < mff(I) . In this case el(I) = mtf(I)’ 92(1) = mff(l) and 93(1)

= mff(l) . To check a machine for feedback, one should do a computation
as above. If one does not end up with the # partition, the machine
cannot be realized with trigger flip-flops using f for feedback. If one
does end up with the # partition, then he must continue to investigate
by, for example, considering those two block partitions p > 6(I) to see

if 1"tf"p.

Feedback in Set-Reset Flip-Flop Realizations

In order to determine when a function f can be used as feedback
in a machine M realized with set-reset memory elements we define the

following relations.

Definition 10, Letr and p be state partitions in machine M and
f:{s} x {x} - {0, 1}‘?’ where 4 is a positive integer, Then +"rf"p iff

1. p is a 2 block partition.

2. v.p"pf".

3. For every two states a,b and every input x such that ;S(a, X)
and §(b, x) are specified, tlal = r[b], plal # p[b] and f(a,x) = f(b, x);
then pls(a, x)] = pls(b,x)] or 6(a,x) ¢ plal and s(b,x) ¢ plb).

Before we cor;sider the subject of feedback in set-reset realiza--
tions we must prove the next results which are similar to the ohes proved

in the trigger ffip—-flop development,
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Result 15 (Lemma).

Let M be a machine and let h:{s} - {0, 1}n and f:{s} x {x} - {0, 1}{'.
Let AV_<_ {l1,...,n}and ge{l,...,n} but ggA. If for every y e{0, _1}n and
for every input x Y (y,x) =Y _Uly,. fly, %), %) + §g Wy, . fly,x),x) where
U > W, then Rg(y, x) = Ig(yA, f(y,x),x) and Sg(y,x) = Hg(yA, fly, %), x).
Proof, ‘

Let Rg(y,x) = _I_I(yA, f(y,x),x) and Sg(y,x) = W(yA, f(y, x),, x%). Show"
that this is allowable. That is, show that if Yg = 1 and Yg(y,x) = 0 then
Rg(y,x) = 1 and if yg =0 and Yg(y,x) = 1 then Sg(y,x) =1, In addition, one
must show that Rg and Sg are not both one for any (y,x). Suppose Yg(y, x) =0,
Then if Yy = 1, U(yA, f(y,x),x) = 0, Thus ﬁ(yA, fly,x).x)=1= Rg(y,x).
Suppose Yg(y,x) = 1 and yg = 0, Then W(yA, fly,x))=1= Sg(y,x). If 7
Rg(y,x) = 1 then U(yA, fly,x),x) = 0 and since U>W W(yA, fly,x),x) =0,
" which implies Sg(y,x) =0. If Sg(y,x) = 1,then W(yA, fly,x),x) =1 and

since U>W U(yA, f(y,x),x) = 1 which implies Rg(y,x) =0. |

Result 16 (Theorem),

Let M be a machine and f:{s} x {x} - {0, l}'{'. Let M be coded
by h into {0, 1}n. Lett = %pi where A < {1,...,n} and p = pg where
gef{l,...,n}. If r"rf"p then Rg(y(X) = Ig(yA, i(y,x),x) and Sg(YrX)
= Hg(yA' f(Y,X),X).
Proofv.
i) Suppose geA. Then p >t and since 7"rf"p implies Tu.p"pf"p
we deduce that v "pf"p. Therefore Yg(y,x) = Fg(yA, fly, %), %) :Ergm Resultvl .

Define Rg(y,x) = Fg(yA, fly, %), x) and Sg(y,x) = Pg(yA, fly. ). x).
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ii) Suppose gg¢A. Then again t.p"pf"p and from Result 1
Yg(y,x) = Fg(yA,yg, f(y,x),x) . If we let U(yA,d,x) = Fg(yA'yg =1,d,x)
for every d ¢{0, 1}'& and W(yA,d,x) = Pg(yA,yg = 0,d,x) for every d {0, l}'r’
then Yg(y,x) = yg U(yA, fly,x),x) + '}_’g W(yA, f(y,x),x). Recall that there
are freedoms on Pg in the proof of Result 1, Namely, Fg(hA(a),hg(a),
f(h(a), %), x) = hg[é(a,x)] if 8(a,x) is specified, For every other (yA, yg,d,x)
with d {0, 1}{' and Yy ef{0, 1}]\‘ Fg can be specified in any manner. We
specify it as follows:

For every (yA, Yg' d, x) define Fg(yA’ yg, d,x) = Pg(yj\’ i}g’ d, x) when
there is no a e{s},x ¢{x} such that f(a, x) = d, hA(a) =y

A
specified, Show when Pg is so specified that U > w. Suppose W(yA, d,x) =1,

and §(a,x) is

Then F ,vy_=0,d,%x)=1, ClaimF vy _=1,d,x) =1, This clearly is
g(yA Yg ) g(yA Yg ) y
true from the above statements unless there exists a,b e{s} and x ¢{x]}

| such that (yA,yg = Q) = (hA(a),hg(a)); (YA'yg =1)= (hA(b)’hg(b)); f(a, x)

i

f(b,x) = d and s(a,x) and §(b, x) are specified. But hA(b) implies 7 [al

+ib] and hg(a) = hg(b) implies pla] # p[b]. Since hg(b) = 1 from

F (h .h (a), f(h(a),x),x) = F , =0,d,x) = 1 we infer that

g(A(a) g() (h(a), %), %) g(yA Yg ) we i

hg[& (a.x)] =1 ors(a,x) e plbl. But since v "rf"p, this implies §(b, %) ¢ plb]
nd h [6(b,x)]=F (h, (b).h (b), f(h(a),x).x)=TF , =1,d,x)=1.

a g(X) g(A()g() (h(a), x). %) g(YAYg )
Therefore W(yA, d,x) = 1 implies that Fé(yA,yg =1,d,x) = 1 which implies

U(yA ,d,%) =1, Therefore U >W, From Result 15 this implies the theorem.”
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Result 17 (Theorem).

Let M be a sequential machine coded by h into {0, 1}n. Let
f:1{s} x {x} - {0, 1}&. If M is realized by set-reset flip-flops such
that Rg(y,x) = Ig(yA, fly,x),x) and Sg(y,x) = Hg(yA, f(y, %), x) where
gef{l,...,n} and A< {1,...,n} then v"rf"p where ¢t = %pi and p = Py’
Proof.

i) Suppose geA. In general ¥ X)) = R ,X)+vy S , X).

) Supp g g g(y) Yy g(y) Yg g(y)
Therefore Y (y,x) = T , Hy,x),x)+y H , Hy,x),

g(y ) Yy g(yA (v, %), x) Yg g(yA (y.x), %)

= Fg(yA, fly, %), x).

From Result 1 this implies r .p"pf"p and since gel implies
p > 1 this implies ¢ "pf"p and v "tf"p.

ii) Suppose g¢A. Then, as before, Yg(y,x) =, fg(yA, iy, x)
L.+ ;’g Hg(yl\' fly. %), x) = Fg(yA,yg, f(y,%),x). From Result 1 this implies
t.o"pf"p. Leta,b e{s} and x e{x} such that r[al = v[b]. plal # plbl,
and fla,x) = (b, x). Note that t[a] = t[b] implies hA(a) = hA(b) and
olal # plb] implies hg[a] # hg[b]. Suppose §(a, %) ¢ p[b] and also suppose
h [al=1. Thenh [s(a,x)] = 0 which implies Y (h(a),x) = 0=T1 (h, (a).

g[] g[( ) p g(()) g(A()
f(h(a), %), x) or, equivalently, Ig(hA(a), f(h(a),x),x) =1, Since Ig = Rg
and R =1 implies S = 0, we must have S_=H (h (a), f(h(a),x),x) =0
g g g g A

which in turn equals Hg(hj\(b)' f(h(b), x),x). Therefore Yg(h(b),x) =0
which implies that §(b,x) ¢ p[b]l. Suppose hg[a] = 0. Then hg[& (a,x)]=1
which implies Yg(h(a),x) =1 = Hg(hA(a), f(h(a),x),x). This implies that’
Sg(h(a),x) = 1 and therefore Rg(h(a),x) =0= Ig(hA(a), f(h(a),x),x). Since
Ig(hA(a), f(h(a), x) = Ig(hA(b), f(h(b), %), %) and hg(b) = 1, this implies that

Yg(h(b),x) = 1, Therefore hg[é (b,x)]1 =1 and §(b,x) ¢ p[b]. Hence t"rf"p.
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With these results out of the way we are ready to define the con-
cept of feedback in machines realized with set-reset memory elements.

This definition is similar to Definition 6.

. Definition 11,  Let M be a machine and f:{s} x {x} - {0, 1}{’.

M can be realized with set-reset flip-flops using f for feedback iff M
can be coded by h into {0, 1}n such that‘
1. There exists {Al, .o ,Ak} a set of positive integers such
that u< v implies A <A .,
u v
2, If ie/\1 then Ri(y, x) = Ii(f(y, x), x) and Si(y,x) = Hi(f(y, %), x)

for every vy €{0, l}n and x e{x}.

3, If ieh ~A where 1 < r< k then R (y,x) =1I.(y , Hy, x), x)
r or- - i AR WS |

1

and §.(y, %) = Hi(yAr_l, £y, %), x).
4, II'{ Py = g where Ps is the partition associated with hi'
k

Again we define the m operator this time with respect to "rf",

and then prove some results concerning it,

Definition 12. Let M be a machine and f:{s} X {x} > {0, 1}&.
Let 1 be a state partition.

i) msf('r) =T{p|r"rf"p}. 1If {plfr"r "0} = ¢, then define mif(T) =1,
We frequently call mjf(rr) by mrf(T) deleting the 1.

R T P i .
) m () =m(m (7)) foriin{1,2,...3.

-Result 18,

Let v,7,, and p be state partitions in a machine M and

1

f:{s} x {x} - {0,1}&. If TS and 7"rf"p, then Tl“rf"p, .
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- Prooi.
Leta,b e{ s} such that Tl[a] = Tl[b], fla,x) = f(b, %), and §(a,x)

and §(b,x) are specified. Tl[a] = rrl[b] implies r[al = v[b] since ¢ > Ty

Suppose plal = p[bl, then pls(a,x)] = pls(b, x)] since T,-0"Pf"p. Suppose

plal # p[b] then s(a,x) ¢ plb] implies (b, x) ¢ p[b] since «r"rf"p.“

Result 19.

Let v and v, be state partitions., If t >

1 ) thenm fr) >m (r,).

Proof,
Let p be such that v"rf"p. Then Tl"rf"p from Result 18 which

implies mrf(T) > mrf(T 1) ”

Result 20,
. L i+l
Let M be a machine and f:{s} x {x} - {0,1}". Then m e (1 <
"m;f(I) for every i e¢{l,2,...}.
Proof,
. 2
i) Show mrf(I) < mrf(I) . Clearly mrf(I) < I. Therefore mrf(mrf(I))
2
< mrf(I) from Result 19. Thus m (1) < m (1),
. j j-1 . . i
ii) Suppose mrf(I) <m (1) with 2 < j. Then mrf(mrf(l)) <
-1 it

m’_ " (I)) from Result 19, Thus mrfl(I) < mif(I).”

mrf ( rf

If M is a g state machine then since I can be refined at most

ag-1

g-1 times mrf

(1) = m?f(I) . With this we are ready to state and prove

the main result of this section.
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Result 21 (Theorem).

Let M be a g state machine and £:{s} x {x} - {0, 1}*". M can
be realized using set-reset flip-flop memory elements for feedback iff
mff—l(I) = .

Proof,

Suppose M can be realized using f for feedback. Then M can

be coded by h into {0, 1}n such that Definition 11 is satisfied. Let

. =1 p,.

1, From 2 of Definition 11 and Result 17 I"rf"pi when ie:/\1

and P, is the partition associated with hi' Therefore, mrf(I) < Hpi = T
_ A
2. From 3 of Definition 11 and Result 17 (II pj)"I‘f" o for
) Arq

every ieA~Ay_ 1. This together with Result 18 implies that II'{ p],"tf"pi,‘
r-1

~that is, ¢_ "tf" Py for every ieAr.

-1

Assume m . 1 (1) < for

3. From 1 we know mrf(I) <7 of <t g

every r such that 2 < r < k where k is given by Definition 11. Show
r | _ . : .
m.l”f(I) <7 . From2 mrf('r - 1) < I[{rpi T,.. From the inductive hypothesis
~ r-1 r
and Result 19 mrf[mrf (Nl < mrf(Tr—l) ST Thus mrf(I) ST
4, Show mff—l(l) = ff, From 4 of Definition 11 III\. py= #. From
k

=1 pi=ﬂ' . Therefore mlrif(l) =fg. From Result

3 of definition 11 mk (D <1

k
20 this implies mgf—l(l) =g,
We now consider the converse, Suppos‘e mff_l(l) =g. Letk
be the first integer such that m]:f(I) =g. Thenl<k<g-1.
1, Let El = {pi‘ie[\l} be a set of partitions with the properties
that I"I’f"pi for every ie-A1 and II-\I 0§ = mrf(I) . Such a set exists since

1
the set {p|I"rf"p} has these properties,
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2, Let Ez = {pi[ ie[\z} be a set of partitions with the properties

1E ) H] '] = 2 ]
that Ez >E1, mrf(I) rf Py for every ieh andI}L p;=m (I). Again, such

2 rf

a set exists since {p [mrf(I) "rf"o} has the desired properties, This

2

follows from Result 18 and the fact that mff(I) < mrf(I) .

3. Let Ek = {pilieAk} be a set of partitions with the properties

. k'_]- Mo : = k
that Ek > Ek—l' m (1) "tf Py for every 1eAk and I/'.\[kpi mrf(I) . The set
{p [mf{l(I)"rf"p} has these properties., This follows from Result 18 and

k k-1
the fact that mrf(I) <m (1).

4. For every ieh, let hi be the function associated with Py i.e.,

k

_ — - Koy oo
hi.{s} - 10,1} and hi(a) = hi(b) @ pi[a] pi[b]. Since mrf(I) ] lepi,
h is a 1-1 coding function. Note that the range of h is {0, l}Ak. Thus

if we let n be the nurﬁber of elements in Ak, to be consistent in notation,
n
_then h:{s} - {0,1}",
5. From Result 16 since I"I’f"pi for every 1 in A, Ri(Y,x)
= Ii(f(y,x),x) and Si(y,x) = Hi(f(y,x),x) for every y ¢{0, l}n. Also, from

r-1 r-1
» = 11! 1 3 — d
Result 16 since III\E Py~ Mg (1) and m e (1) "rf p,» when i e Ap=Ap_7 @n

: r~1
2<r<k, thenR(y,x) = Ii(yAr_l, f(y.x),x) and 8 (y, x) = Hi(yAr_l, fly, %), x).

Thus Definition 11 is satisfied and M can be realized with set-reset

flip-flops using f for feedback. ||

For an example of the previous results consider machine Cin
Figure 6. This machine can be realized without feedback using set-
reset flip-flops. This can be seen as follows. Let f be a constant,

The only partitions p such that I"rf"p are (1,2, 3, S;Z) and (1,2:3,4,5).
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Thus m (1) = (1,2;3,5;4). 1fp is one of (1,2,3,5:4),(1,2:3.4,5),

(1,2,3,4:5),(1,4,5;2, 3) then (1,2:3, 5;4)"rf"p. Thus mff(I) = ff and

machine C can be realized without feedback. This is done in Figure 6.

Let p, = (1,2:3,4,5), o, = (1.2,3,5:4) and o, = (1,4,5:2,3). Then
1\1 =1{1,2} and AZ = {3} satisfies the properties given in the proof of
Result 21, In this case E, = {pl, pz} and Ez = {'ps}. A coding function
h corresponding to P1rPy and Py is given in Figure 6,

The following results relate set-reset feedback realizations to

unit delay feedback realizations.

Result 22,

Let M be a machine and f:{s} x {x} - {0, 1}{'. Let r and vy be
state partitions such that +"pf"y. If p is a two block state partition
" such that p > vy tﬁen T "rf"p.

Proot.

Let a,b, e{s} and let x ¢{x} such that r[a] = ¢ [bl, f(a,x) = (b, x)
and 8(a,x) and (b, x) are specified. Since ¢"pf"y, this implies y[s(a, %))
= yls(b.x)] and since p >y this means pls(a,x)] = pls (b, x)]. Therefore
Ty |

Observe that any state partition v = II{p|p > vy and p is a two

block partition}. With this in mind we can easily prove the next result.
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Gl ™ W DN e

Inputs
0 1
1 5 1 f = constant
2 5 2 mlf(I) = (1: 131 51——)
3 3 2 9
4 4 ) mrf(I) = (1;2;3;4;5)
5 3 1
8
Machine C
h(1) = (0,0, 0) Ry = x sl=§<
h(2) = (0,0,1) R2=x SZ=O
= = w7 7 = e -+
h(3) = (1,0,1) R, =xy,v, S;=v¥,+xy,vy,
h(4) = (1, 1_, 0)
h(5) = (1,0, 0)
0 1 0 1 0 1
000 100 000 0dd ddd 100 000
001 100 001 0d1 ddo 100 004
101 101 001 0d0 140 d0d 00d
120 || 110 001 00d 110 || ddo | oo01
100 101 000 0d0 1dd ddl 00d
Figure 6,
Result 23,

Let M be a machine and f:{s} x {x} - {0, I}L. Let 1 be a state

s >
partition. Then mpf(fr) > mrf(T)‘
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Proof.

Let v be a partition such that +"pf"y. Let p be a 2 block parti-
tion greater than y. Then «"rf"p from Result 22, which implies

mpf('r) > mrf(’l‘) o

This implies immediately a result relating set-reset flip-flop
realizations to unit delay realizations. Results 19 and 23 imply immediately

. i i .
that for every i in {1,2,...} that mpf(T) > mrf(T) because mpf(T) > mrf(T)

-1

from Result 23 and, if m; -1 -

F ) Z w7 ) thenm I )l 2 m 0] >

i-1

(mrf (t)) from Results 19 and 23, This implies the following result,

mrf

Result 24 (Theorem).

If machine M can be realized with unit delays using f for feedback,
then M can be realized with set-reset flip-flop using f for feedback.
< Proof.

The hypothesis implies from Result 3.that mggl(l) = # where q is
the number of states, But this implies mff—l(l) =g, | From Result 21 this

implies the theorem, ||

It should be noticed in Figure 6 that machine C cannot be
realized with unit delays using f = constant for feedback, To determine
if a machine M can be realized using f for feedback, it is necessary to
compute. mrf(T) for various 1 which is not an easy problem. In general
one must consider all two block partitions p to. see if 1"rf"p. Fora g
‘state machine there are Zq_l—l such partitions, It is wise to compute

mpf(rr) first. From Result 23 we know that mrf('r) < mpf(T)' therefore, it

is not necessary to consider these p such that p > mpf(T).
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In this paper we have developed a method for determiniﬁg when
a machine can be realized using a function f for feedback with either set-
reset or trigger flip~flop memory elements. This method is more difficult
to apply than the one given in Reference 3 for the unit delay case. We
have also shown in Results 12 and 24 that for a given machine its feed-
back properties will be different for trigger, set-reset and unit delay
type realizations. Thus in general one must first decide the type of
memory element he wants to use before making a study of the feedback

characteristics of a machine,
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INESSENTIAL ERRORS IN SEQUENTIAL MACHINES*

In papers by Hartmanis and Stearns (Reference 1 and 2) the con-
cept of an inessential error is defined and ;ome of the properties of in-
essential errors are derived, An error partition HE is defined and investi-
gateq. However, it is not shown in these papers how to calculate HE'
The purpose of this paper is to give an algorithm for determining IIE.

First we shall review some concepts that are given in Reference 1,

Definition 1

A Moore type seqﬁential machine is a quintuple M = ({s}, {x}, {0},
85:1), {s} isa finite set called the set of statés, {x} is the set of inputs,
| {0} is the set of outputs, 8:{s} x {x} - {s} and A:{s} - {03.

In this paper thé only machines we will consider are Moore
machines which are completely specified; that is, the domain of § is all
of {s} x {x}. The next definition extends the function § to all sequences

of inputs.

Definition 2

Let M be a sequential machine. lLet {Xi}i be a sequence of inputs

of length j > 0. We define a function § as follows. Let ae{s}
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" j = i I = Y j = i = -
5(a,{xi} l) aifj=0, 6(a,{xi}l) 6(a,x1) if j= 1. In general

- | -1 :
sla, {x37) = 8(6(a, {x;}] )'Xj) foreverszz.l

Definition 3

Let M be a sequential machine. Letj > 0, {Xi}J1 be a sequence

of inputs and let ag{s}. Then we define A(a, {xi}]l) =1 (s5(a, {xi}Jl)) .

Definition 4

Let M be a sequence machine,

i) Let r be a partition on {s}. If a,be{s}, tlal = ¢[b] means a
and b are in the same set, sometimes called a block, of r. M_ore.over
Act means A is a block of T
Example 1, If {s}={1,2,3,4,5}andt = (ﬁ;m) then
7[3] = ¢[4] = ¢ [5] and +[2] # 1 [3].

ii) An S.P. partition + is a parti;tion in {s} such that for every

a,be{s} with rlal = t[b] then rls(a,x)] = +[s(b, x)] for every input x.

Definition 5-

Let M be a machine. An error is a partition v_,where a,be{s}

ab

and a and b are the only two states in the same block of Tob’

Example 2. If {s} = {1,2,3,4,5} thenr_ . = (1,2:2:4;5).

13

Definition 6

An error ¢ is an inessential error iff there exists a finite set

ab
A< {1,2,...} for every input sequence {xi}c; such that Ma, {Xi}];) 7

(b, {xi}};) if and only if ke A
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Definition 7

Let Il =Z{Tabhab is an inessential error}.

It is proved in Reference 1 that if ¢ and T o are inessential

ab b

error, then Tac is an inessential error., This implies the next result.

Result 1 (Theorem)

Let M be a machine. If ¢ < 1. then 7 is an inessential
ab— E ab

error and conversely if ¢ is an inessential error thens . < II

ab ab— E°

We conclude the introductory concepts with a brief discussion
of set systems. It turns out that the set system is the principal con-

cept to be used in determining an algorithm for computing HE.

Definition 8

A set system on {s} is a collection p = {Ai|ieA} where A is a
. finite index set and A < {s} for every ich. Also

i) x A = {s)}

ii) Aiz Aj implies that Ai = Aj for every i, jel.
Given a set system p, we say plal = plb] for two states a,b ifa and b
are both in some set of p. It should be observed tﬁat a partition is a

set system.

Definition 9

Let M be a Moore machine
i) Let E= {[a,b] |a,be{s} and A(a) # A(b)}

ii) LetX = {[a,b] |a,be{s} with a # b}
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Definition 10

i) If + and p are set systems on {s} such that §(8,x) < B for
every‘Aefr and xe{x} where B is some number of p, then we say +"p"p.
Note that (A, %) = {b|b = 6(a,.x) for some beA}.

il) We say t is an S.P, set system if t"p"r.

iif) If v is a set system on {s}, we define mSS(T) =Ifp|r"pP"p}.
Note that if Bemss(rr) and B is not a singleton, B = §(A, x) for some Aert
and xe{x}.

. i+1 _ i , .
iv) m (t) mSS(mSS(T)) for every integer i > 1,

Result 2

If + is an S.P. set system on {s}, then mSS(T) < 7 and

(t) <

i

i+1 :
m' mSS(T) for every i > 1,

sSs
Proof:

Since v has S.P., v"p"r which implies ¢ <I{p|r"p"p}. This
implies mss(rr) < 7. The second part of the result is easily proved by
induction.

Figure 1 cbn’cains an example of these concepts. In Figure 1 7
has S.P. and the mSS operators on v are computed, TFor this example

E={01,2],01,4).12.3], 12, 5], 3,4), [4,5)}
At~this point we turn to the problem of computing HE' Thus far
all we know is that HE is a sum of inessential error partitions which is

not a good characterization as far as its computation is concerned.
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I

T~ (1121415;—3—)

ml ()= (1,2,4:2,4,5;3)
2 — . Py

mSS(T) - (1121412141 5:3)

¢

oo W N

= W NN O
> [\ ot wn 15N (o]
o~ o = o >

Figure 1, Machine A
Result 3 which follows is one of the principal results of this paper in
that it gives a necessary condition that IIE must satisfy. In the following
results when we write [a,b] = [c,d] this meansa=candb=dora=d

and b = c,

Result 3 (Theorem)

Let M be a g state machine where g > 2, Letp= (g) the com-
bination coefficient., If v is a partition of {s} such that ¢ < 8 and 1
" has S.P., then for every [a,b] ¢E such that t[al = t[b] we have that
i i . ,
mss(rrab)[a] %mss(rrab)[b] for every i such that 1 < i< p.
Proof:
Suppose there exists [a,b] ¢E such that v[al = ¢[b] and an integer
, . i _ i .. .
with 1 < i < p where mss('rab)[a] mSS(Tab)[a] . This implies that there

. i-1 _ il
exists states a, b, ., and an %, such that m (+ )[ai—l] m (Tab)[bi— 1]

i-1" Ti-1 ab

and [6(51i 1,xi), és(bi 1'Xi)] = [a,b]. Continue in this fashion until we have
1 1 . .
al,b1 such that mss(Tab)[al] = mss(Tab)[bl]' .Thls implies that there
exists X, such that [al'bl] =[5 (a,xl), 6(b,X1)]. Thus we have a sequence
i - i - ivg _ ®
{xj} | such that [s(a, {xj}l), s(b, {Xj}l)] [a,bl. Form the sequence {v;}]

as follows;'.
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Yy

x ifl<n<i
n n -

x Lifn>i

yn n-1i

Let A = {r|r = ni, n a positive integer}. If keA then k = ni which.
. , - ni, - ni . . . .
implies [s(a, {xj}l ), &b, {xj} )1 = [a,b]. Which in turn implies that
- ni - ni , . .
)\(a,{xi}l ) = a(a) and Mb,{xi}1 ) = A(b). Since [a,bl] ¢E, this implies
A la, {Xi}];) # (b, {Xi}];) for every keA. Since A is an infinite set, this
means r_,. is not an inessential error, Thus from Result 1 Tab is not
less than II.. But since tlal = +[b] and M >7, thisisa contradiction
which proves the theorem, |

The remainder of this paper will be concerned with proving the
converse of Result 3 which is stated in Result 6. The proof of the con-

verse is fairly involved. For this reason we will isolate certain parts of

the proof with the following lemmas.

Result 4 ,(Lemma) ‘

Let M be a machine. If a,b ¢{s} and I [a] # I [b] then there
exists a sequence éf inputs {xi}? and [ao,bo] ¢E such that [ao,bo] =
[s(a, {xi}l;), 5(b, {xi}];)] for every ke]O where Io is an infinite subset

-of {1.2,...3}.
Proof:

Since I'IE[a] # HE[b]’ we know that 7_, is not an inessential
error from Result 1. This i@plies there exists ,{Xi}i’ such that A(a, {Xi}];) #
A(b, {xi}];) for every ke]f where J' is an infinite subset of {1,2,.,.}.
Let a, = 5(a, {xi}];) and b= 5(b, {xi}];). Let I[c,d] = {keJ' |[c,d]l =
[ak,bk]}. I' < [cl:ld]e J[c, d] since if keJ' this implies [ak,bk] ¢k or
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- : L . ; . . U
[ak,bk] [c,d] ¢E. This implies keI[C which implies that ke[c,

,d] dleE [c, dl.
Since J' is infinite, this means I[aolbo] = Io is infinite for some [ao,bo] k.

_ _ k k s
Thus [ao'bo]f [ak,bk] [s(a, {Xi}l ), 8(b, {xi}l)] for every keJ | which is

an infinite set. ||

Result 5 (Lemma)

Let M be a g state machine with g > 2, Letp= (g) . Further
suppose there exists {xi}]; a sequence of inputs with k > 1 such that
_ k ' k
[ao'bo] = [s(a, {xi}l), 5(b, {xi}l)] where a_,b ,a, and b are states of
M. Then there exists a sequence of inputs {yi}'fl’ where 1 < 4 < p and

1<t gkand b ] = Dolas {y,7). o0y DI,

Proof:

i) If k < p then the theorem is satisfied., Suppose k > p. Forn
such that 0 < n< k letB = {lc.dl]lc #d, [c,dl = [s(a, {Xi}jl)’ (b, {xi}jl)]
for some j such that 0 < j < n}. Clearly Bn+1 > Bn' Also Bn+1 = Bn iff
0<n<k-land sla, (%3] ). a0, 0x3 7 01 = Bota, {x,3]), 800, {3,3])]
for some j such that 0 < j< n. Note that for every n Bn_<_ K and the
cardinaiity of K is p. This implies that there exists integer r such that

B = Br where 0 < r< p-1. Let I in be the minimum such r and let

L.,=r . +1, Thenl<y

<pandB =B This implies that there
1 min -

4l
-1 and [6 (al {Xl}il)] = [6(b, {Xl}/rlll)l 6(bl {Xi},;jl].

1

exists j1 such that 0 < j1 <1

Note that p- 1>¢, - j; >land k- (£;-j;) >p - -j;) > j; > 0. Let
k

. = - -1 1

kl k (&l ]1). Then k > kl > 1, Form the sequence {Xi,l}l as

follows. Let
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»
i

i1 xilf1_<_1_<_J1

If

X

i) i .
1T % ({,1 Jl)lfJ1<l_<_k

X
k k
1 1 = j
Show [6(a,{xi!1}1 ), S(b'{xi,l}l )] [ao,bo]. From the defi
s k j Iy = j
nition of {xi‘ 13! [a(a,{xill}ll). 6(b'{xi,l}11)] [6(a,{xi}1l),

S % 2y - |
8(b, {x,371)] [sa, {x371), 6(b, {x37] )1, Thus if j, <r<k,, since for

1
, C _ , r Ty _
isuchthatj, <igk) x, =x+@;-5) el {x 1)), s(b. (% ] N

[6(6(a'{xi,l}]11)' {Xi,1}§1+1)' 6(500’{’(.31,1}11)’ {Xi,1}§1+1)] -

r+{,1—jl

[6(6(a’{xi}§l)’ {Xi}/(,1+l

). 6(6(b,{xi}}(1’1). {xi}lzfj;jl)] =

41 —] 2 -]
[6(a,{xi}§ 11 ’n, é(b,{xi}l:rl 3| 1)1, 1f we letr= k., we get that

1
lota, 0, 131300 80,03, 101 = [sa, {x;3)), sl {x,35)1 = [a_,b,].

Thus {Xi 1}1;1 is a sequence of inputs such that 1 < kl < k and

k k
1 1 fmd
[5((:1,{}(111}1 ). G(b',{xi,l}l )] [ao,bo].
i) If kl < p, then the lemma is satisfied. If not, repeat step i)

and get a sequence {xi k2 where 1 < k, < k. and [s(a, {xi 2}];2),

2} 1 2 1
8(b, {x, }kz)] =[a ,b ]. Continue in this manner until for some k, we
i,2°1 O O }
k., 1
= J - 2 3
have kj < p. Leti kj‘ Then the sequence {Xi,j}Fl {yi} =1 satisfies
the lemma. ||

The next result is the converse of Result 3, Its proof follows

easily from the two preceeding lemmas.

Result 6 (Theorem)

Let M be a q state Moore Machine where g > 2, If 1t is-a S.P,

partition on {s} and if for every [a,b] ¢E such that t[a] = 7[b] we have
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i i . * ;
that mss(rrab)[a] # mss(Tab)[b] for every i such that 1 < i< p thent < L.

Proof:

Suppose ¢ is not less than HE. Then there exists a,b such that -
r[al = ¢[b] and HE[a] 7 HE[b] . From Result 4 this implies that there
exists a sequence of inputs {x.} and [a_,b ] ¢E such that [a_,b 1=

i’l o0 o o
k k P
[s(a, {Xi} 1), s(b, {xi} 1)] for every k e]o an infinite subset of {1,2,3,...3.
Let k1 be the minimum element of Io' This means that m];é(rr)[ao] =
Ky o _ . ky
mSS(T)[bO] which implies «r[ao] rr[bO] since 1 > mSS(T) from Result 2.
k
.. _ — 2

Let kz be the minimum element of I {kl} . Then [ao,bo] [s(a, {Xi}.l ).
ko

k ‘ k
6o, D321 = Dolola D3y ey 2,)0 600, D310, 02,000 =

k k k
2 2 2
[5(ao, {Xi}k1+l), é(bo, {Xi}kl+l)]. Thus we have a sequence {xi} Ko+

' = ko ko

of length k,-k, such that [ao,bo] [s (ao, {Xi}k1+1)' é(bo, {Xi}k1+1)]'
. ) _ L

From Result 5 there exists {yi} 1 such that [ao,bo] [s (aol {yi}l)’

L . . , £ .
a(bo,{yi}l)] and 1 < 2 < p. This implies [ao,bo] mSS(Ta b ). Since

0’0
fa ,b ] Eand+la ]=+[b ] this is a contradiction. ||
o' 7o o o .

Results 3 and 6 imply the following Theorem which is an algorithm

for finding HE .

Result 7 (Theorem)

Let M be a g state machine with g > 2. Let F = {r|r satisfies
i and ii below}.

i) 7 is an 8.P. partition of {s}.
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ii) For every [a,b] ¢E such that t[al = ¢[b] miSS(Tab)[a] #
m;s('rab) [b] when 1 < i< p. Then there is a largest partition in F and
this partition is I‘IE
Proof:

From Result 3 Il ¢F. IfTeF, thent < I, from 6. I
Therefore to compute IIE examine the S.P. partitions of {s} beginning
with the largest ones. Next check these partitions for property ii)
above. The largest partition which satisfies ii) is HE

We conclude this paper with some examples of Result 7. Con-
sider machine A in Figure 1. The only S.P. partitions are those in the
figure. We compute F, Clearly f the zero partition is in F. Consider
r=(1,2,4,5:3). Note that [1,zf| ¢E and +[1] = [2]. miS(T

2 - Y 5 A5 AT 4 -
me (v )= (.42, :3:5 (,r o) = (2,4:2,5:3:1) and m_ (r,,)

. (3;2,4;2,5;1,2;4,5). Since p= (2) = 10 and [1,2] ¢ mis(rrlz), this
implies TeF. Thus F = {#} and I = 4.
Consider machine B in Figure 2. All the S.P. partitions are given
in the figure. We again want to compute F, Since [4,5] ¢E and mls(745)[4] =

mis(¢45)[5], ‘clearly Ie'F; Consider The only states a,b such that

X
frl[a] = 7[b] and [a,b] ¢E are {[1,3],12,3],[3,4]}. Consider these pairs.

1 - i i _ , _
mss(T13) = f which implies that m (rr ) g for every i. mss(Tzs)

T o T A 2 e T A . 2
(1,2:1,3:4;5), (T23) (1,2:1,3:4;5). Slnc‘e mSS(T23) SS(T23)

— Cr 2 — (T Ao 3 -
we can stop. m s(T34) ,(2, ,3.5), mSS(T34) = (1,4,2;3;5), ms$(¢34)

—— ——

(2,4:;1,3;5) and again we can stop. By noting that state pairs {1,33}.{2,3}
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Inputs Output

1 I
1 2 1 0 T, = (1,2,3,4;5)
2 1 3 0 T, = (1,2,3,5:4)
3 2 1 1 1, = (1,2,3i4,5)
4 4 3 0 v, = (1,2,3;4:5)
5 5 2 1 g

Figure 2. Machine B

3 » .

. i i i
and {3,4} are not in the same block of mss(T13)' mSS(TZB) and mss(T34)

respectively for any i we conclude that rrleF. Since there can be no

other partitions larger than v, in F, this implies that v, = II

1 1 E’
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REALIZATION OF SEQUENTIAL MACHINES

WITH THRESHOLD ELEMENTS

INTRODUCTION

Sequential Machines

A finite-state, synchronous, sequential machine consists-of three
finite sets and two functions. The three sets dare the input set I, the state
set S, and the output set O. The two functions are the next-state function
fs and the output function fO. Both functions are defined on the set of

state-input pairs, SxI. Their ranges are respectively S and O,

In order to realize a machine, binary codes are firsf lassigned
to each of the inputs, states‘ and outputs. The functions which assign
the binary codes. are called assignment functions‘. - They are one-one.
The assignment function for thé input set is denpted by AI. Thus we
have AI: I-{0,13 n1. Similarly, for the state and output sets, we have
the assignment functions 2% 54 {0,1} % and 2°; O - {0,13 "3, The
set}j\—"- {A?,AS,AO} is called an assignment,

Two functions are induced by the assignment of binary codes,
The coded next-state function, ?S, maps the ordered pair consisting of
the codes for Si and Ij OltltO the code for fS(Si,Ij). This same pair is

mapped onto the code for fO(Si,Ij) by ?O, the coded output function,

The induced functions are defined formally by the following two equations:
Lo Fh0Se). At = 2%, 1))

II. ?O(As(si),AI(Ij))=AO(fO(Si'Ij)) 52



The tables for ?S and ?Qare obtained from the tables for fS and
fO by replacing the inputs, states and outputs by their codes.

The component function fIS( of the coded next -=state function
is called the kth state~variable function, The:component

function ?QJis célled the kth output-variable function,

k

Of primary concern is the behavior of a sequential machine, "Th&™ -
behavior is the response or output sequence due to some initial state and
an input sequence, Let x,y,2 be respectively variables over the code

I, .S e o, ‘ —
sets A°(I), A"(S) and A7(O). If y  is the code for the initial state and
ot - ]
X is the code for (t)th term of the input sequence, then the (t)th terms of

the corresponding_ state and output séquences are given by:

n

t _ff\S( t-1 t

Y Y ,X—l)‘,tzl and

t
z

~O, t t '
fo(y, x), t>0,
Objective

In this paper, V\}e are concerned with finding the one-level as-
signments A for a sequéntial machine. Here A is one-level if every

: ' L ~S ~0 | ) L

component function of £ ~ and £ = is threshold. To illustrate this, two
threshold gate realizations for a sequential machine M, corresponding

to two different assignments, are presented in Example 1.



EXAMPLE 1 - A finite-state, synchronous sequential machine M.

I= {Ill IZI 131 14}1

S O -
£ L, ;00 £, I, I, I
5,18, |8;]8; |8 8, o. 0,]0,]0
S, 8, |8, (8, |8 s, ;{ 0,10,|0
5,18, s- s, |8 33 0, 10,10,] 0
S, 18, 18,18, | %4 0, |0,10,]0
Ass’ignrrn»ent Al 1
s 1 A (IJ)
Casy A 20 |
5:00 01 30 11 £900 01 10 11
00101 l10/ 0011 00 |00 |00 |10 01
o1l ot fo1]oo |11 o1 |00 (o0 |10 01
AS(Sj) AS(Sj) :
10101 ]10} 00 |11 10 11 {11 {10} 01
11011 Jor |11 |12 11 1 o1 10 01| 01
~AS, t t A t+l t ottt t.t
State- £ %)=y, R AR EROEY
variable ‘ . o .
functions ~S, t t A tl t .ttt t, :
I, v.x) EPRE RS AR SRR R RS
e ~0 t't A t_t_t —t _t ot_t |t
Output- - - fl(y,x)=z y1y2x1.+y XX +y1x1x2+.y2x
variable A . .
functions t t,Le t  t_t_t t.tt,  t t t
Eoly x) = 2,=y X %) vy T X 03 X, ¥ X Y Yy

/

S‘——'- {Sllszl 83, 84},

AO(01)=OO
29¢0,) =01
AO(OB)ﬁlO‘

0 _
A.(OA)—ll
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(a3

2 T T

AO(O

1
QO
o

1

I

0 .
A (02) 011
0 _
A (03)- 001

0 -
47(0,)= 100

/
=
. ,
1— -2 T~ .
*2 N—— 2
s — yt
Ly
= S
Yo I T 1
, yp—
g\ .
5 2
— 32555553\\\; .
Y IR |
D
Figure 1, Realization of M for Assignment A 1
Assignment AA2
I
Al AT(T)
AS o2 ~0 .
£f%]oo 01 10 11 2|00 01 11 10
00|11 01 |00 glof *00 | 000 | 000 | 001 | O11]
IS WU W ! .
s S
AT(S ) 11111 11 |00 110] 4S¢s,y 22| 000 | 000 | 001 | 011
| i J
01|11 01 00 :10] 01| 100 | 100 | 001 | 011
3 '! . .
10110 11 110 ,10: 10§ 011§ 001 | 011 ] 011




| 56

fas, t 0B w1ttty ot
State- fs(y,x)=y =y (%, +7,)+%
; 1 1 11 12 2
variable A »
functions ~AS,t t t+1  _t .t t
= = “+
fz(y, ) =y, X, ¥, Yz)
P
- t _t t_t
Output~- fo(yt,xt) =z =V.y.X
: 1 1 17271
variable

functions < ~0

-/
t -3 T t+1
3 =l v}
—-/__’——'

Figure 2. Realization for M for Assignment Az .

The obstacle _confronted in attempting to force the ?f ‘s and T (j)l s
to be threshold functions is that of chara'cterization.‘ By definition, a
Boolean function F is threshold iff there exist.an n-tuple @ with real com-
'ponents and a real number T;s;uch that for every point P of the n-cube,
F(P) = l.iff é . Pz'l‘r . The gate having the parameters 3, ‘Ifr then realizes

F. Determination of 3 and T, requires use of a lengthy algorithm [1], [3]-[4).
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Thus the definition irhplies .r’xo characteristics o;f a'Bééiean function which
make it reédily recognizable as beiné a threshéld function. Because of
this', the following approach seems a reésonab_le one,
An algérithm is developéd which yiélds all code ass‘ignments for
which the state-variable and‘output;va'riable functions satisfy é neces- »
" sary conditién that they b‘e threshold functions . This set of code assign-

ments will contain the set of one-level assignments,

A necessary condition that a Boolean function F-be a threshold

function is that of domain Z—aSummability. Let F be defined on {0, 1}n,

Then F is 2-asummable iff for every pair of points Pl’ Pz Which map onto

zero and every pair of points P, , P4 which map onto one, the pairs are

3

‘unequal in sum (i,e., P. + P2 # P3 + P4v). It is well known that if F is

1
- defined on the n-cube with n< 7“,’ F is threshold iff F is 2-asummable, |
Forn> 7, it _is a ne;:essafy condition,

An ipco-m\pletel}} :épecified func'tién defined‘ on -the n-cube
is domain 2-asummable if, over its don;ain, no pair of points which map
onto zero is equal i'n sum to a pair which map onto one. C‘leabrly thi‘s is
necessary in order ‘éhat it;have‘ a 2-asummable ext-ension to the n—cubel.,
If it does have skuchv an exfénsio_n, we will call the incompletely speci~

fied functipn Z;asummable .

‘ 1.8 07, - ' '
If A= {A".A",A "} is an assignment for some machine, then A

will be called an accepfable assignment if each state-variable and

output-variable is domain 2-asummable,
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CHARACTERIZATION OF THE ACCEPTABLE

CODE ASSIGNMENTS

. Assignment of Codes According to Partition Se'fs

In this paper a partition of a set T will mean a two block partition

of the set., If an element tl is contained in one block of a partition ¢ and

~ some other element t, is contained in the other block of 17, then rr separates

2

the pair :{_tl,tz} . A partition set {ﬂk,}r; onasetT has zéro-product if every
pair of elements of T is éeparated by some partition e in {‘n’k}? . If an
#(T), Whére # (T) is the number of elements in T, then a unique binary code

of n-digits may be assigned to each element of T according to a zerq-product |

partition set {"k}lll' For each ¢, , define a function Ak from T into {0, 1}

k

Which maps one block of " o.nto 0 and the other 'block onto 1, Consider
the functibp A: T - {0, 1}“ defined by A(t) = (Al(t), e An(t)).

_.That A is one-one may“be verified by letting ‘c1 # tz . Then some
m, Separates {tl,tz}, since {‘eﬂ'k}? has zero-product, and so Ak(tl) %Ak(tz).
It follows that A(,tl) # A(tz) . Hence A is an assignment function fér T de~
fined according to a zero-product partition set {nk}rll of T,

Since for each k, A A

‘may be defined in-2 ways according to 1r

k k'

may be defined in 2P ways according to {nk}?. Let = {(1) B,C} where
n : n :
a = {ozi} 1,@ = {Bj} 2 andC = {\{k} 3 are zero-product partition sets of

S

I, S, and O respectively. An assignment)ﬁ\= {AI, A, AO} is defined

58



according to @ = {Q)QB)C} if AI, AS, and AO are defined according to 0\)
) and € respectively.

+
There are an

na+ng ; : ; ;
assignments /-(\ which may be defined according
to °. The question arises as to whether the threshold property of the state-
variable and output-variable functions is inherent in the set ® of zero-pro-

duct partition sets or whether it depends also on the assignment/{ defined

according to @ . The answer is given by the following theorem,

FUNDAMENTAL THEOREM. Let M be a machine and = {0, @®, ¢ }

where (1)@3 and & are zero-product partition sets of I, S_and O _respectively.

If Ail’ and A are two assignments for M, both defined accordinq to &

and if 1fi and 2f18< are respectlvely the kth state-variable functions for

: S, <S8
Al and AZ' then 1fk is threshold Aff sz is threshold .

PROOF: It is casily shown that the‘ '

algebraic expression for zf ?{ is obtamed from that for lf X by simply

*

complementing certain of the variables or else by complementing certain '
of the variables and then complementing the result. It follows that lf i

is threshold iff zf i is threshold [2].
A similar result holds for the output-variable functions. For this
reason, we may narrow the problem of looking for the acéeptable assign-
ments, for some givén machine, down to the problem of looking for the
acceptable sets @ of zéro—product partition sets on I, S and O.. Here @

is acceptable if some, and thus any, assignment /5\ . defined according

to P, is acceptable.

Accordingly we adopt the convention of calling & = {a,@, T 3}, where
Q, B and T are zero-product partition sets on I, S and O respectively, an
assignment. Literally, then, we are still concerned with finding the set of

acceptable assignments.
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Decomposition of 2-asummability :

In order to characterize the acceptable assignments &, it 1s expe-
dient to first decompose the condition of Z—asumrr;ability into its three con- '
‘stituent Aparts. Again, a function F is 2-asummable if no pai‘r of pointé which
map onto zero is equal in sum to a pair of points which map onto one. l'l’he
first constituent of the 2-asummability condition is a pair of sets, each set
being a pair of points, This structure will be encountered in situations when
the parent set is other than the n-cube. Variations of the structure, such aé'
that in which the points are not all distinct, are also encountered, The
following definition, doncerning the first constituent of 2-asummability, is
thus necessarily vague as to the parent set and as to the relationship between

the components of the's’;ructure.
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DEFINITION I, Let T be any set witht,_ inT, k=1, ..,

k
4. The pair of sets, A = {{tl,tz}, {t3,t4}} » will be called a T set-pair

10t

a%nd denoted by (tl 2 3,t4) .

The notation is not unique in that there are eight such symbols,
all repres‘enting L. The modifier T is used to indicate the parent set, The

sets {tl,tz} and {ts,t4} are called the blocks of A while the points tl,tz,

t3 and t4 are called the components of A, Each block of a set~-pair always

has two distinct components even though they may not be distinct elements
of T. For example, { {03, {’0, 2}} may be written (0,0;0,2) (or in any of
the otherwthree permutations: (0, 2: 0, 0), etc.) or may be abbreviated by
{(0; 0,2). Regardless of how in is written, we will speak of it as hav_ing

four components t1,§2,t3,t4 where {{tl,tz}, {t3,t4}} = { {O}f{O,Z}} . A

set-pair whose blocks are not disjoint will be called trivial,
We proceed with the decomposi’cioh of 2-asummability by making a

definition concérnirig its second constituent, the equal SQm property.

DEFINITION II. IfT < {0, l}n, i.e. if T is a subset of the n-cube,

+t ., then )\ is

and if A = (t_,t it ,t4) is a T set-pair for which t, +t, =t 4

123 1 3

said to be ES, (equal sum) .

An example is obtgined from M, the fnachi\ﬁe of. our example_. For
Aséignment/lk\lof Exampleil , .if T =‘ AS(S) X AI(j), the T set-:pair 6 = {(00,00),
(VOO, 11); (0.0, 01) (00,10)) is ES since in summing over either block, we
obtain (00, 11),

Finally, there is involved in the condition of 2-asummability the ‘
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idea of a function mapping one block of a set-pair onto zero while mapping -

-the other block onto one. This third constituent of 2-asummability is 'for-

malized in the following definition,

DEFINITION III. Let F be a function, F: T - {0,1}. F induces a
set-pair A = (tl,t27t3,t4) 1ff the sets { {F(tl), F(tz)}, {P(t3), F(t4)}} and

{{0}, {1}} are equal, ’I“hat‘is,'iff (P(tl), F(t ):’F(tg), F(t4)) = (0; 1),

2
As an illustration, consider the example, © ='<(OO, 00), (00, 11);

(00, 01), (00, 10)), given of an ES set-pair. From Example 1, for Assign-
A -

1 ~
ment A it is seen that the state-variable function £

2 induces §. As a remark

iq passing, 'it- will be noted that a necessary. condition that a set-pair be
induced by a function is that the set-pair be non-*tr\ivial. For example,

?g could not map one block of e'gﬁ;co zero and the other onto one if the two
blocks intersected. From the following definition, it will be seenthat be- _
cause ?2 induces the ES set-pé’ir 9., it fails to be 2-asummable. Again,
the’ three constituent parts of .the. 2-asummability condition are: the set~-
pair st:ructure, the ES (Equal Sum) propei‘ty, and the concept of a function

inducing a set-pair. Reuniting these three parts, we have an obviously

- equivalent definition of domain 2—as’ummability:

DEFINITION 1V, A Boolean function F is domain 2-asummable iff
F induces no ES set-pairs.
The advantage of this definition over the first one is that this

definition isolates each of the three constituents of the 2-asummability
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condition, To each constituent corresponds a question; the answers will

enable us to effectively characterize the acceptable assignments,

Three Questions

We adopt the convention of reserving the symbol y for SxI set-
pairs. Once an‘assignmentﬁ) is chosen and assignment functions AI,AS
ére defined according to zero-product partition sets G, on I and S re-
spectively, we will talk about the AS(S) X AI(I) set-pair A(p) as being
the one Obté,ined from u by replacing states and inputs by their codes.
Thus, if - |
b= 8LT )L (ST )i (B 1) (8,.1)
then
Aw) = (%) A1), (56,81 ) (56, 8% ). (55 ,). AT ).
Given an AS(S) X AI(I) sét-—pair 9. since the assignment functions are
one-one, there will be a unique SxI set-pair j such that A(p) =6. u is
called the pre-image of § in this. instance.

Quéstioﬁ I roughly corresponds to the first constituent of 2-asum~
mability, thé set-pair structure over the domain of the function. The
' do‘mgininof the state—variable and output-variable f:unctions is AS(S);:AI(I)'.
Accordingly, we mu'svt_ concern ourselves with set-pairs over this set,
Our concern extends to their pre;images as 'set forth in the following

question,

QUESTION I. Whét are the possible pre-images c_>_f hon;'c'rivial' '
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ES set-pairs over AS(S)XAI(I)_? That is, for what SxI set-pairs y, do there
exist assignment functions AS and AI such that A(yu) is non-trivial ES?

| Question II corfesponds to the second constituent of 2-asumma~
bility, the ES property. A function fails to Eé domain 2~asummable only
if one of the induced set;pairs is ES. Accordingly, we are concerned.
only with those set—g;a.irs over AS(S)XAI(I) which are ES. The first question
.dealt with their pre-images; the next question deals with the asSighm'e"ﬁit'sww

~

P involved .

QUESTION II. Given thaty is a possible pre-image of a non-

trivial ES_set-pair, for which assignments (P is A(y) actually ES?

Question III corresponds to the th.ird constituent of Z—asummabi-
lity, the induction of a set-pair by a function, While there may"be set-
pairs ox}er the domain of the function which are ES, the function fails to
be domaiﬁ 2-asummable only if it induces one of them. Accordingly, we
must concern ourselves with thev induction of set—pai;s by state-variable

and output-variable functions.

QUESTION III. Given an Sxi set~pair ., ;é_r which assignments

P does one of the state-variable functions induce A(p)?
To deal with these questions requires some preliminary defini-
tions and several lemmas. The answers to the questions will then take

- the form of three theorems.

Three Theorems

DEFINITION V. Let T, T* be sets with F a function from T into
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T* and A = (tl,tz; t3,t4) aT set-pair. Then X implies F(\) with respect
to F where F()) = (F(tl), F(tz); P(t3), F(t4)) . Thus F(\) is obtained from
A by replacing each component of A by its image under F.

There are several instances in which we will have occasion to
employ this definition. In one instance, T is SxI, T* is S (or O) and F
is fS (or fo). An example from Example 1 would be y, = <(Sl’Il)' (81,14):
(Sl,IZ), (8%13)) for which fS(p,) = (81,83; 82,84)° Incidentally, for
As‘signment )\1, A(y) = ((00,00), (00,11); (00,01), (00,10)) is the AS(S)XAI(D
set-pair § which was gi*;fen earlier as an example of an ES set-pair. | In the
other insltance in which this definition is employed,‘ T is S (or 1), T* is
{0,1}, and F is A]S{ (or A]I( ). An exampl‘e wo:ld be \ = (81,83; 82,84) .

1
From Example 1, we see that for Assignmenta, A? (A) = (0,1; 0,1) which is,

incidentally, ES.

DEFINITION VI. Given an 8xI set-pairy = ((5,,1 ), '(Sj,In):

(Sk,Io), (SL,Ip)?,the S set-pair, ps(p,) = <Si'sj; S ,S&} is the state pro- |

k
Jection of |, while the I set-pair pI(‘“L) = (Im,In; IO,Ip) is the input proj'éé-

tion of .
Béfore stating the first lemma, it is necessary to categorize the

different ways in which the components t. of a T set—pair A= (t bt

k ‘ 1/t Ty ty)
can be distributed with respect to the blocks of a partition T of T. By the
definition of a set-pair, ti and tj will be regarded as different components

of A even though they may be the same element of T (i.e. t, = tj) .
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One and only one of the following must characterize the distribution

of the components t. with respect to the blocks of .

k

Case I. One block of 11 f:onfai'ns all four components ‘ck of \.

Case II. Each block ;of 7 contains a corhpbnent from each block of A.

Case III. One block of ¢ contair.ls one block.of A v.vhile the other
block of i contains the other block of A. This distribution is particularly
significant and will be indicated by writing A < .n .

Case IV. One block of{T contains three’components of A while the
other block of 4 contains the fourth qomponent of A.

v'i“oAgive examples of each case, let T= {1,2,3,4,5,6} and =
{{1,2,3,4,}, {5,6}}. Then (1,2,; 3,4), (3,5:4,6), (3,4,’.5,6), énd

(24, 3; 4,5) are respectively examples of cases I, II, Iil aﬁd IV.

DEFINITION VII. If either Case III or Case IV characterize the‘
distribdtion of t_he components of A with respect to the blocks of 7, then
m cancels A. Here again, \ is a T set~pair while 1 is a partition of the
sét T.

In-the last example, ¢ = {{'l, 2,3,4}. 42{5, _6}}_ cancels both the set-
pairs {(3,4: 5,6) and (2,3; 4,5). The significance of this definition lies

with the following lemma.

LEMMA I. Let T-_lﬁg set, F a function from T into {0,1} and

{6, —1—} the partition 9{1‘ induced by F. That is, 0 is the subset of T con-

taining those elements which F maps onto 0; E is the complement ofB) .
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Then if A = (tl,tz;t3,t Y is any T_set-pair, F(\) is ES iff {H, T}does not

cancel A.

PROOF: F(A) is ES iff F(t‘l) + P(tz) = P(t3) + P(t4) iff either 1) or 2)
are true as follows:
= -+ = -+

1) 0 F(tl) P(tz) P(t3) F(t4),or

2 P(Tl) F(tz) F(tg). P(t4) so
that {tk}lll is contained in 0 or 1 and Case I characterizes the distribution
of the tk with respect to the blocks of {_5,—1} .

= 4 : : —}-‘ (
2) 1=F(t)) +F(t) F(t,) + F(t,) so
that {P(tl), P(tz)} = {F(t3), F(t4)} = {0, 1} which is the case iff each block

of {-(—),_1-} contains an element from each block of ) = (’cl,tz; t That

3,t4) .
is, 1= F(tl) + F(tz) = P(t3) + P(t4) iff Case II characterizes the distribution

of the tk with respect to the blocks of {—6,.1}.
Thus F()\) is ES iff either Case I or Case II characterizes the distri-
bution of the components of A with respect to the blocks of {-5,—1} iff {E,_l_} N

does not cancel A,

[oX

LEMMA II. Let T be a set and A an assignment function, A:T-{0, l}n,

_ where the kth component function of A is denoted by A

tion of T induced by A, . Then for any T set=pair A, A(\) is ES iff no

—=="%k

cancels A.

PROOF: A()\) is ES iff Ak(x) is ES for every k. Apply Lemma I.

Consider now the different relationships which may exist between

-pai = PRSI S . iting t, = t, if t,
the components ‘of a set-pair A (tl tz t3 t4) Writing i tJ if t1 and tj



68

are the same element of T, we may categorize some of them as follows,

| S Ty

hold. E.G., T={1,2,3,4}, = (1,3 1,3).

Case-c. One of the cross—over relationships t

ortl_=t47!t2=t3

Case-d, ’I‘be four components of )\ are all distinct elements of
T. E‘.G., A=(1,2; 3,4).

Cas_e—s.' The four components of A are all the same element of
T. IE.G., A= (1,‘1; 1',1) or simply (1; 1),

A set-pair A will be called Type-c, Type-d or Type-s depending
on whether»Case-—c, /Case-d, or Case-s, ’respectively, is the case for

the relationship between the components of i.

. LEMMA 111, _I_fx = (tl,tz: t3,t4)_ is some T set-pair, then a

necessary and sufficient condition that there exist an assignment func-

‘ -, tion A for the set T such that A()) is ES is that A be Type-c, Type-d or

Type-s. Moreover, A(A) is ES for every assignment function A if A is

either Type~c or Type-s..

PROOF: The necessity may be shown by supposing that \ is

- not one of these three types. Then either t, =t, # ty=1t, or exactly """

1 4

three of the components are the same element of T. In either case, the
four components of A represent two distinct elements, say t and t*¥, of T.
Let A be any assignment function. If e is induced by Ak' it is

easily seen that A's being one-one implies that {nk} has zero-product,

Then necessalrily e separates {t,t*} for some e This same e then
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cancels )\ and consequently A()) is not ES. This shows the necessity.
That A(\) is ES for every A 4if A is either Type-s or Type-c is
immediate. So is the existence of an A for Aw}.'xich A(X) is ES if A is Type—d.
This establishes the sufficiency.
We are now in a position to deal with the three questions. To

answer the first, we have:

THEOREM I. A necessary and sufficient condition that, given an

SxI set—péir W there exist assignment functions AI and AS such that A(u,)

is non-trivial ES is that ,, be one of the following types: (d,d), (d,c),

(d,s), (c,d). (s,d), (c,c). (Here the letter in the first position is respec-;
tively ¢, d, or s depending on whether pS(u) is Type~c, Type-d or Type-s.
In like fashion, the letter in the second position tells what type of set-

pair pI(g) is.)

PROOF: Obviously, A(y) is ES iff both AI(pI(p,)) and As(ps(p,)) are ES. By
Lemma III, there exist assignment functions AS and AI suéh that As(ps(u)) and
Al(pl(“)) are ES iff pS('p,) and pl(u) are each one of Type-c, Type-d or Type-s.
Thus there e;{ist AS’and AI such that A(y) is ES 1ff w is one of the following -
types:  (d,d), (d;s), (s.d), (c.d), (d/c). (c,c), (s,0), (c,s), or
(s,s). It is easily Qerifiéd that A(y) is trivial if |, is one of the last three
types, thus leaving only the fir;t six,

Theorem I characterizes the possible pre~images of ES set-péirs,
thereby answéring the first question., To answer the second duestion we

have:
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THEOREM II, Given an SxI set-pair . A(p) is ES for some choice

of assignment functions AS and AI iff no o cancels pI(p,) and no Bj cancels

Pg (n).

PROOF: The input assignment function AI is defined according to
the zero~-product partition set {ozk} on I, Then its component functions
By Lemma II, AI(pI(u)) is ES iff no o cancels
pI(p,). Likewise, AS(pS(p,)) is ES iff no Bj cancels ;fs‘(p,). Thus A(y) is

AI , induce the set {«

K Kl

ES iff no o cancels pI(p,) and no Bj cancels ps(p,).

Given an SxI set-pair P the question of which assignments & =
{a,8,c1 is Ap) an ES set-pair for is answered by Theorem II. By Theorem
II it can be asserted that A(s) is ES as long as (L contains no o which

cancels p.(y) and B no g which cancels p_{(4). To answer the third
ae B

S

question we have:

THEOREM III. Suppose fs(p,) < Bk for some SxI set-pair _and

some partition Bk of S. Then for every pair of assignment functions AS

and AI such that A]S( is defined according to By ” the kth state-variable

function f _induces Alu).

PROQF: From the definition of the state-variable functions, it

follows that T (a(,)) = & (°(1)). Now T induces Aly) #T > (a()

k
= {0;1) iff Ai (fs(u)) = (0;1),
maps

Now write g, = {—d,—l_} where 0 is the block of B, Which A]S(

onto zero and’i is the block mapped onto one. Ai (fS(u)) = (0;1) iff
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one block of fs(p,) is contained in—(i and the other block in—l. But this is
indicated by writing fs(p,) < {-C—),—l-} = By Thus f i induces A(p) iff fs(p,)
< By

An identical result holds for the output~code functions, i.e‘. ‘
f (]2 induces A(y) iff fo(p,) LV Given an SxI set-pair,, for any assign~

ment P = {a,B,e} for which B8 contains g > fs(p,) one of the state-variable

functions induces A(y) where 2

K is defined according to 8. Thus the third

question is answered,

A Theorem Characterizing the Acceptable Assignments

" Let us extend the notion of set~pairs implying other set~pairs to
set-pairs implying partitions. Let A,oc be respectively I and S set—pairs,'
let g,y be respectively partitions of S and O, Then =g (A = y) iff there
exists some SxI set-pair y which is (s,d) or (c¢,d) and for which A = pI’(p)

o Similarly, . _
and fs(p,) < (f(w) < y). Ao = B (o= vy) iff there exists some SxI set-pair
w which is (d, s) or (d,c) and for which ¢ = pS(p,) and fs(p,) <B (fo(u) <v).
Finally, (o,A) = g ({o,A) = y) iff there exists some SxI set-pair y which is

"(d,_.d) and for which ¢ = ps(u) and A = pI( u) while fs(p,) <8 (fo(p,) <.

The following theorem characterizes the acceptable assignments.,

THEOREM 1V, lLet M = (I,S,O,fs,fo) be a machine. Then an

assignment P = {Q)QB)C} is an acceptable assignment for M iff 1) for

every Bj in 3 and Yy in €, neither fs(p,) < Bj nor fo(l-h) < ,Yk*'gp_r"arij, SxI

_set-pair ,_which is (c,c). 2) For every Bj in B and Yie in&, A= Bj or
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A= Vi for some I set-pair A only if O contains some oy which cancels A.

3) for every Bj in B and Yy inC, g= Bj O 6= vy for some S get-pair ¢

only if @ contains some Bi which cancels g. 4) for every Bj in B} and

}Yk_i_p_ e, (g, = Bj or (g.)\) = Yk_f_c_)_r some S set-pair ¢ and some I set~

pair A only if either ¢, contains anu

h which cancels A or if B contains a

B; which cancels ¢.

PROOF: To shbw the necessity, let § be acceptable and show
that 1), 2), 3) and 4) must hold. Since ® is acceptable, each state-
variable function ?JS and output-variable function ?]CZ is domain 2-asumm-~
able and thus induces no ES set-pairs.

To show that 1) holds, let be (c,c). Then pS(p,) and pI(p,) are
both Type-c and so AS(pS(u) and AI(pI(M) are both ES., Consequently A(y)
is ES and thus induced by no state~variable or output-variable function.
By Theorem III, this happens iff fS(p,) $ ﬁj and fo(u) $ Yy for evéry Bj in
B. and Yy in €, Thus, ify is (c,c), for every Bj in B and Yy in C,
neither fS( ) <8, nor fO( ) <

W= ] - (VTS 'Yk'

To show that 2) holds, let A be any I set-pair. Suppose thét
A= Bj or A =y for some Bj in 8 or for some Vi inC . Then there exists
some SxI set-pair y, which is (s,d) or (c,d) and for which A = pI(u') and

. fS O . . S,
either £ () < Bj or £7(y) < Y. Since pS(p,) is Type-s or Type~c, A (pS(p,)
is ES. By Theorem III, either?? or?o

k
be ES. Since AS(pS(M)) is ES, AI(pI(u)) must not be ES. By Theorem II,

induces A{p). Then'A(y) must not

then, ai cancels pI(“) = ) for some ozi in 4, Thus, if A is some I set-pair,
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for every‘sj in ® and Yy inl, A= Bj or A= only if  contains some o

Yk

which cancels 1.
| Pa:uft 3) may bé shéWﬁ to hold by an argument which is the

dual of that for 2) while the érgument for 4) is»-a composite of those
for 2) and 3). | |
h ‘To show the\sufficiency, let 1); 2), 3) and 4) hold énd show that
# must be acceptable\. P is acceptable iff each state-variable and
output-variable function is domain 2~aéummable iff none of these functions
indﬁce an ES set-pair. TLet 8 be a non-trivial ES set-pair over the domain of
these functions. Then, _by Theorem I, there exists an SxI set-pair y which
is one of4(d,d), d,s), (d,c), (c.d), (s.d) or (¢, c) and for which A(p) = 9.
If p is (c.c), then by 1), for every BJ, in B and vy, in T, neither 'fsn(u,) <8y
nor fO(p,) LV

If i is (c,d) or (s,d), let A = p(u). Since Aly) is ES, a'n) s Es.
By Theorem II, no o, cancels ». Then by 2), neither A = Bj nor x = Yy for
any Bj or Wy . Consequently, neither fs(p,) < Bj nor fo(u) < vy for any Bj
oy,

Similarly, if u is (d,e), (d,s) or (d&,d) it may be shown
that neither fs(,u,)s Bj or fO(M)S Yl; for any {Sj' or Yy .

Thus, no matter what type of SxI set-pair,, neither fs(p,) < Bj

k

nor fo(u) < Y for any Bj or Yy - By Theorem I1I, neither ?? nor’f\o
induces A(M) = g for any ?JS or ?1? Thus no state-variable or output~

variable function induces an ES set-pair; hence each is domain 2-asumm-

able and # is acceptable.

Having characterized.the acceptable assignments £, we now

_outline a procedure for finding them.
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AN ALGORITHM YIELDING THE ACCEPTABLE ASSIGNMENTS

The algorithm consists of the following steps.
Step 1. Compute the implicants fS(p,) and fo(p) for each (c,c).(d,d),
(d.c), (c,d), (d,s) or (s,d) SxI set-pair y.
Step 2. Compute the set of acceptable partitions,
D= {TTl'n‘ is a 2-block partition of S or of O such that
fS : O ) .
ni (w) or £7(y) for any (c,c) SxI set-pair u}

N

Step 3. Compute er for each 11 in D where LTr is the list of all )\'s,
¢'s, and (o-,}\)i s implying 7 (here ) and ¢ are respectively type—-_d
I and S set-pairs.)
Step 4. Compute K)\ for each type-d I set-pair }\. where K)\ is the
list of all input partitions « which cancel ) .

Compute Kc for each type-d S set-pair ¢ where Kc is the list
of all state partitions g inD which cancel g.
S’teg 5.. Compute‘Mp for each pair p of inputs where Mp is the list
of all input partitions o which separate p.

Compute Mp for each pair p of states Where_Mp is the list of
-all state partitions g in D Which separate p.

Compute Mp for each pair p of outputs where Mp is the list 6f
all outputrpartitions v in D which separate p.
Step 6. Compﬁte the points ‘6) for which the discriminant function
Ais 1. ;I‘he discriminant function is defined as follows. Let =

74
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{Q/ :@,C} where (. is a set of input partitions, £ is a set of state

partitions in D, and € is a set of output paﬁitions in D, Let vy be
the set of all such £ . Define Xa: y - {0,1} by Xa(@) =1 iff ¢ in

Q. . Do this for each input partition o. Similarly, for each state
partition g in D and for each output partition v in D, define YB:\;f—»{O, 13
and Zy:\'g—»{o,l} by YB(@) = 1 iff g in & and zy(;?) =1iffyin ¢ .

Let Pl' PZ'P3 be as follows:

P1 = {1 1;1 — (£Xy ) where the product is taken over
i’ k} P 4in Mp all pairs p of inputs Ij'Ik'

I

P, = _
27 58,3 =p

( =Y,*) where the product is taken over

in all pairs p of states S.,8S. .
B p b p Pk

P3 = {OHO L= p ( = Zy ) where the product is taken over
i" 7k y in M_ all pairs p of outputs O_, O, .
P ik
I T LT 1T .
et P4, P5, P6 be as follows for each ¢ in D.
m_ II ,
P4 = inL ( =Xy ) where the product is taken over
A n o inKQO) all I set-pairs ) inL .
» 'rr
PTST = ig L (x Yg ) where the product is taken over
¢ p g in K(o) all S set-pairs ¢ in Lﬂ.
Pg= ( H) in L i Xy T I YB } where the product
SR T o inK(Q) g inK(e) is taken over all

1 ] I
(G'k) S 1in -

41(@)= Pl(ﬁ) . PZ(P) . PB(P)

- | o B .pB.ph II Y.pY . pY
8,0P), [ginD(YB+P4 Fs Ps)nyinD(Z.f.-Iﬁ Fs Ps)}
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A(R) = Al(/@) C AL (R). 'v

To show that the algorithm actually yields the acceptable
assignments, it is sufficient to show that A(fP) =1 iff P is an
acceptable assignment, It is easily shown that _/_\_l(}P). =1 iff £
is an assignment (i.e., iff 4B have zero-product).

To see that Az(@) =1 iff satisf-ies the terms of Theorem
IV, suppose that AZ(IP) = 1. Since & UC & D, part 1) of Theorem
| IV is automatically satisfied, If ) =2 B in H, ) is in LB. AZ(P) =1‘
meansnﬁgB + Pi . Pg . P%= 1. ?B = (0 since g in & . Thus Pf= 1 and

o ;é‘é\) = 1, Thus (. contains an o which -cancels X. Together
with a dual result for the output partitions, this means part 2) of
Theorem IV is satisfied. The argument that part 3) holds is analagous
while the argument that part 4) holds is a composite of those for 2)
and 3).

Conversely, if § satisfies the terms of Theorem IV, Azitp)
may be shown to be equal to 1. This may be done by showing
—‘fn + PZ . PTSr . PTBT to be equal to 1 for every v in D, If v is not in

®&uc ., ’Yﬂ = 1. Otherwise £ 's satisfying parts 2), 3), and 4) of

Theorem IV imply respectively that P7, P7, and P are each equal to 1,

4 5 6

Since Al(P) = 1 iff B is an assignment and AZ(P) =1 iff
satisfies the terms of Theorem IV, A(P) =1 iff / is an acceptable
assignment. The algorithm then does indeed yield the acceptable

assignments.

Execution of the algorithm is partially illustrated in Example 2,



using the machine of Example 1, Being rather lengthy, the first three
steps are omitted here, However an example appears in [2] which
illustrates execution of the algorithm for this same machine. More-.
over, the three steps.are now discussed hére in greater detail and
from this discussion, it is hoped that the reader will be ablt_e to con~
struct these steps for himself,

Step 1) m‘ay be most efficiently accomplished by first computing
the images of the blocks b where a block is a pair of elements of SxI.V
The images fS(b) of the blocks are then combined to obtain the impli-
cants fs(g). If Ky = {bl,bz} and Koy = {bl,b3} are two SxI set-pairs,
fs(ul) can be obtained by combining fs(bl) with fs(sz while fS(;_Lz) can
be obtained by combining fS(bl) with fS(bB) . In this way computation
of fS(b )} twice is avoided.

1

It is convenient to display the impli_cants fS(I,L) and fp(p) in
tgbles, a table for each type of set—pair pu. Let ts and ti belong to
{c.d,s}. Then the (ts,ti) implicant table has a column for each
Type—‘ci I set-pair ) and a row for each Type-ts S set-pair g. The
ehtry in column ) and row ¢ is a list of all non-trivial fs(u)' s and
fo(;.L)' s such that pS(p) = 4 and pI(u) = ). Thus the (ts,ti) table
displays all non-trivial implicants of (ts,ti) set-pairs g.

Step 2) is accomplished simply by listing all state and outpu;c
partitions. Each partition ¢y is then compared‘with each irﬁplicant 5
in the (c,c) implicant table, r is rejected if g > § for Asome 5. The

remaining partitions make up the set D of accéptable partitions,

77



Step 3) is accomplished most easily by first making a list for each
Type-d I set-pair ) of all partitions in D implied by ). The list for ) is
formed by comparing each partition in D with implicants in column ) of
the (c,d) and (s,d) implicant tables formed in step 1. A list for each
type~d S set-pair ¢ of all partitions in D implied by ¢ is formed in like
fashion. That is, each partition in D is compared with the implicants in
row g of the (d,c.:) and (d, s) implicant tables. 'Finally, a similar list is
formed for each pair (g,)) b? comparing the partitions in D with the im-
plicants in row g and column ) of the (d,d) implicant table,

The lists for the )'s, ¢'s, and (g,))'s are then inverted to form
the Lﬁ' s, that is, ) is in Lﬂ iff 4w appeared in the list of partitions
implied by ) .

AExample 2 illustrates partiélly the execution of the algorithm,
) Again, the machine is that of Example 1. The input partitions, the set

D obtained in Step 2, and the lists L. obtained in Step 3 are first listed.
1T

EXAMPLE 2

Input Partitions
&1 ={{II'IZ}'{IIS'IZI}} % 2.{{;1'1}’{12'13’14}}
g = {1/ 1,3, 41,. 1,13 o= {13411, )

@y = WAL 1 151
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The Set D of Acceptable Partitions

Acceptable State Partitions Acceptable Output Partitions
By = t18,.5,3.15,,8,}} 71~ t10;.0,3.10,, 0,1
B, T 118;.8,3.18,.8,3} vy = 1{07},10,,0,.0,})
By = {{853/{5+8,,5,1} v4 = {1043,{0,,0,.0,.}}

85 = {{84}’ {81'82’83}}

Type-d S set-pairs Type-d I set-pairs

The Lists L. Constructed For Each Acceptable Partition g in D And
_ ™ T

Containing All)\'s, ¢'s and (o,))'s Implying .

Lalz
Laé:
LBS:
Lp,:

4

: .(Glrkl):(czz)\l),:(030\1)'?\

(011)\3): (62/2\3)1 czrk3

(o7 xy) (oyon ) loger )ik,

empty

92

(530 (o 2 g) Loy dy) oy ag) logrny) s fog e g) A
1

(61"\1)'0'1"‘1

(o129 log dg) (o000 oy ng)

Ay
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The Lists K()) Constructed for Each Type-d Set-Pair ) And Containing

all Input Partitions o Which Cancel ) And The Lists K(g) Constructed

For Each Type—‘d Set-pair ¢ And Containing Al}l State Partitions g Which _

Cancel 3.

K(Kl): Q’lIO(4101510(61017

K(Az): a21a41a51a61a7

' K‘()\S):‘ozs,ozél,ozs,ozs,oz,]

Kloy): BaeByr By
K(O'z): Bl’B3’B4’BS
Klog): By 8378y 85
The Lists M
22

172 13 174 2°3 f2a 34
o, oy oy % %1 %2
%3 3 % % 3 “3
% Yq % %s %5 “6
o ae o %g 9y “7

S.S
55 515 5% 5% %% Zsh
Bl Bz Bl Bl BZ Bl
B2 B3 P3 Py Ps P2
B3 Py Ps Ps
‘ 0,0
0,0, 90, 99 0,03 9% 34

Y1r¥pr¥3 YiYz o Yar¥ao Y3 MaVarYa VitYVg
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=X AX A ' ' XX AX YK AKX K
Ay = (KX X (K XX X ) (X KX (X 4K P K )

| +X +X + + +Y WY . +Y_ +Y )
(X FX K HK )T XK, ) )+ g Y (Y

+7 -+ + +Z ) Z, -
(Y FY VY, HY ) (0 HY +Y (2 42,42.)(2,42,) (272 ) - 24

+
+Y3) (Yz Y

+ +
(Azl Z3fz4)(zl 24)»

~Uisi'ng ‘éhe Béoléan Law, X (X+Y).= X, we can simplify the product of sums
expression for Allto read:

= +
& 1 (XZ X3

X +
(X AKX ) (KX 2

(Z .+ + +Z
(v #Y )Y, +Y )z ?z)(zz Zy) %3 (2,+2,)

X AN ) (K AKX AKX
+X4+X5)(X1+X3+X4+X6)(X1+XZ X4 X7)(X1 X2 5 '6)

+Y_+ +Y -+
+X6+X7)(Y1+Y +Y3)(Y2 Y, Y4)(Y1 Y, YS)

This type of simplification can be achieved for A2

by 6mi‘ctinc_:j the factor corresponding to (o‘i, )\j) if the list for Bj (c;r- Yk) con-
tains, also, either oy or kj. Thus we have:

A= [Y Y. Y Y+ +X AKX AKX AX NI Y AKX X AKX AK)]
A, [Yl, (Y +Y HY #Y XX XX AX )L Y +HX 4K X X X,)]

Y Y. +Y Y + Y (XX X AX X YK AX AN X+
DY,y +Y +Y +Y I Y (X X X AK ) (KA AKX AX AX)]

7 -+ +X +X +X + ' + +¥X 4+X X T -+

[zl (x1 X4 Xs X6 X7)]_[ z2 (Xl X4 XS X6 X7)(Y3TY4 YS)]
F(XLAX XX X X X+ +(X. X +X_+X +

[23 (X1 x4 x5 x6 x7)(:><3 x4 x5 X6 x7)][z4 (X1 X4 Xs x6 X7)]
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Forming the prqduét A= A 1" A, . and simplifying we obtain:

2

= +X X AKX - +X_+ + + + +X_+
A KRG X (X PP XX XX XXX YK 4 X,

+ + + X, AX AX AKX AX Y.+ |
XlXB XZXS XSXG)(X1X3 X4 XS X6 X7)(Y1 Y

7.7 + +Y WZ, +Y_+Y +
(742,477, ,7,.) Ty (Y, ¥ )@, Y4, 4V )

3 2 7173

+ + ’
YZYSI)(”YIY Y.y +¥4)
2 7174
Let 1 be the set of all combinations of values Q for the Xi(@)' S,

Yj(@)‘ s and Zk(QD)' s such fhat A(,@) =1, If Qis in 1 , writé Ww(Q) for

the total number of Yj‘ s and Z 's which equal.l for Q. If Yj(,@) = 1 for

k
Q. then B contains Bj and if A , defined according to §, is one level,
there will be a threshold gate in thé corresponding r_ealizétion for M WhiChk
computes “thé, jth digit of the next state for M. Similarly, if 2k(/@3) = 1 for
Q. thenT contains Y and if/f‘, defined according to f°, is one level,
_ there'will be a threshold gate in the corresponding realization for M
which computes the kth digit of the present output. Thus W(Q)l equals
the numb;ar of gates- in the realization for M if}} is one-level W};ez:e /{ is
any assignment defined according to £? and Q = (}{1(/6D ),{. .- 'Yl(/@)' .. .‘Z(J@‘),
. |

To find the mihimum one-level rea.lization, if is clear that the
optimal procedure from this pdint is to exhéust T,the‘ search process’ = *'
jordered by the rule: Q, is considered before Q2 iff W(Ql) < W(QZ).
_ Whenever a pointlQ of—-l. is encountered for Whichj{ , defined according to )
& where Q = (Xl(jP), e ,Yl(/@), - 121(93 Yooo) e is or;e~level, a minimal

one~level realization will have been obtained for M.

The most expedient form for A, then, is that form from which the
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points of._l— may be most readily obtained iﬁ serial fashion, Ql before Qz
iff W(Ql) < AW(QZ) . This, in general, may be the minimum-sum-of-pro-
ducts form, obtained by expanding the product-of-sums form and applying
the Quine-McCluskey Procedure, For the discriminant function of Example.
16, it is unnecessary to proceed this far, The form given in Example 3

is adequate,

EXAMPLE 3 ~ A Terminal Form for A

= + + + + + + +
A(P) [X1X3 X X AX XX XX X+ XX X x2>§3x5 X X X 4K X X

+ XX X AX K X+ + + +
" X2X3X7 X3X6X7 X2A4X7 X4X6X7 X4X5X7 X5X6X7, X1X2X4

+ + + + . - (z.7 +
X1X2X5 X2X4X5 X2X5X6 ,x4x5x6] 23 [zlzzzzsjzly2 (zlz2

+ + ) + + + + +
202, % 2,2 Y Y)Y Y Y Y Y Y Y Y Y Y Y Y Y RY VY

+ +
Y1Y4Y5 Y3Y4Y5)]

From Example 3 , it can be seen that if Q is the combination of

‘ = = = = = == =] i A §

values X1 X3 Y1 Y2 Z1 Z3 24 with the remaining variables
0, then Q¢ 1 and W(Q) < W(Q") for every Q'e 1. If 2 is ‘the assignment
such that Q = (Xl‘(ﬁD Yie ./Yl(§>), .o ,Zl(,@), ..). then A(®)=1and
employs as few gates as possible, Hence ® = { {czl,ozs}, {61,52} . {y1,
g y4} }, is acceptable and may as well be considered first, It 'has a
one-level assignment defined according to it as evidenced by Assignrrient
Ay of Example 1 . Should some other assignment, defined according to P,

have been chosen, nothing would be lost. By the Fundamental Theorem, -

it is also one-level; moreover, it results in the same number of gates.
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ADDITIONAL CONSIDERATIONS

This paper concerns itself with finding the minimum one-
level code assignment.for a sequential machine. To illustrate the
size of the problem, there are 1403 different irredundant assign-
ments A for the machine M Of, Example 1. (An assignment func-
tion A: T-}{O,l}n is redundant if there exists k, 1€ k<€n, such that,
. while masking the kth component, A(tl) + A{tz) for every tl 1L tz.
Thus the component function Ak is redundant. An assignment }5&
is redundant if any of AI . AS . o.r AO are redundant .)

The Fundamental Theorem greatly reduces the size of the
. problem :?mffllows . Define a relation=by Al’—t/‘iz iff both /5\1, AZ
induce th;‘fset = {Q ,@,C}. The Fundamental Theorem states that
Alcc AZ implies that Al is one-level iff A , 1s one-level. Accord-
'ingly we may look instead for ® for which an arbitrary /{ defined
according to gy, is one-level. The size of the problem remains
formidable. There are'193 different ass;ignments # for tﬁe machine

M ofv Examplé 1,
The algorithm further reduces the problem. The discrimi-
nant function A yields the'set of acceptable assignments L. 10

" illustrate how this reduces the number of assignments which must be

considered, consider the discriminant function for the machine M in

84
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its form given by Example 3 . The first factor has 19 terms; the second
can be e#banded to 25 terms. Thus the number of points for which Ais 1
and the number of acceptable assignments is 1925 = 475, Moreover,
having the minimum~-sum=-of-products form allows us to order our search
process so that, ingeneral, all the acCeptable assignments will not have
to be tried.

Domain 2~asummability, 2-asummability, and linear separa~

. n,. be positive

bilify are synonymous in a very special case. Let ny.n,
, 5 q

integers with n; + n_ < 7. Consider a machine M = (I, S, O, £

Ty, ).

If the cardinalities of I and S are ny and n, respectively, then the state~
variable and output-variable functions are fully specified for any P=
{Q)@/t}. for which the: cardinalities of _0. and B are ny and n, respec-
tively. Since they are fully specified, domain 2—-asummabi}i’cy and 2~
asummability coincide, Since they are functions of ny + vnz < 7 vari-
ables, 2-asummability and linear separability coincide, Thus SP is
acceptabie iff 82 is one-level, This situation characterizes the machine

M of Example 1 and the assignmentﬁ) by which Assignment Azwas de-

fined.

State Splitting

In closing, it seems reasonable to comment on the size of the
class of machines having one~level realizations. It appears impossible
to give a positive characterization. However, it is easy to characterize

a certain subclass of those machines which do not have a one~level



86,

realization., Let M = (I,S,O,fS,fO) . If for some i,j, m,n we have Sk =
fS(S 1) = fS(S JI)# fS(S 1 )"'=A' f~S(S ,1 )= S ‘then M has no one-level
i""'m in in ' m L : ]
l' tio) N . thi ; t = it ] : v ’ N » .
realization. To see this, lety, ((Sl Im)(Sj In) (Si In) (SJ Im)) Then
w is (c,c) and fS‘(p,> = (Sk;S&) . Since Sk 7 S&, some state partition g in

# will have to separa'te S, and S/Z, for any as‘sig'nment.

k
Then fs(p,) < g and so @ is not acceptable by Theorem 1V, part 1).

Thus M has no acceptable assignmenfs and thus no one-level assignments,
There is a way around this difficulty if we are willing to accept, in

lieu of the original machine, a machine internally different but with identi-

cal external behavior, To illustrate, consider the machines of Example 4.

EXAMPLE 4 - Two Equivalent Machines

1fS L I 1 1fo L 5 sz L L szo L L
s, | s, s, s, | 0|0, s, | s,|s, s, | o, o,
5,152 151 821 92192 Sy 1 82 B3 851 92] O

s, | 8,] s, s, 10,| 0

It may be shown that 1\/[1 and M2 are outwardly equivalént.

Inwardly they differ as evidenced by the assignment in Example 5.
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EXAMPLE 5 i-= An Assignment for Mz and the Resulting Realization
/.

™o 1 o 1
00| 00 | 10 000 | O
10| 10 | 11 101 | 1
11] 00 | 10 110 | o

NG, t ot t t—t
= +
fl(Y/X) X Ylyz

AS, t t,_ tt-—t
fz(y.IX.)—xylyz

ot Xt) _ ottt

Figure 3 A one-level realization of M, .

From this example it is seen that Mz‘has a one-level threshold

realization, TFor any assignment ,@for I\/I1 there must be some g in B
which separates. {81,82} . Theng > (Sl;82> = fs(p,) where y, is the
(c.c) set-pair; <(Sl’11)(82'12); (81,12), (SZ,Il)). By the terms of

Theorem IV, @ fails to be acceptable and so I\/I1 has no one-level reali- . '\

zationithus Ml and M2 differ internally in this very significanf respect,
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Mz is said to be equivalent to I\/I1 and is said to be derived from

I\/I1 by splitting state 1fS (SZ,IZ). The origin of the term state-splitting

becomes more obvious when viewing machine behavior in terms of state

graphs.It is easily seen that by succéssiyely splitting states, starting

with any machine Ml' a machine Mn equivalent to M., may be obtained

1
which enjoys the following property. No state occurs in more than one

column of Mn' s state table. The significance of this observation lies

in the following Theorem.,

THEOREM V. Let M = (I,S,O,fs,fo) be a machine for which

fS(Si,Ij) = fS(Sk,IL) only if Ij = I&. (i.e. no state appears in more than
one column of M's state table,) Let By be the partition { {Sk},S - {Sk} }
of S and let @ = {Bkl Sk in 8}. If Q and T are any zero‘—productA partition-
sets of I and O, and A is defined according to @ = {a, QB)C} . then the

“state-variable functions for /5\ are each domain 2-asummable.

PROOF: Show thét@ satisfies the terms of Theorem Iv,

‘The importance of this theorem is not in that it offers a practical
alternative when the algorithm fails (A=0). Instead the theorem merely

makes it possible to assert that if the algorithm fails for a machine Ml’
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“may always be found for which there exists an

an equivalent machine M2

assignmeﬁt which is acceptable with lre‘spect to the feedbaék logic. Un-
fortunately nothirig cah be done‘ about the output logig in the event tha‘t’
fo(u? = (Oj;Ok) , Oj # Ok' for some ‘(d,c) w. There is nothinc; to be
gained by splitting outputs since then logic must be included to identify

outputs with same origin.,

It is hoped that some state-splitting procedure
might be formalized which creates a minimal number of néw
states and which yields an dquivalent machine for which

there exists a one-level threshold realization.

\Y%
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A. BART HOWE, MeEmMBER, 1EEE, AND CLARENCE L. COATES, SENIOR MEMBER, 1EEE

Abstract—This paper is concerned with the study of logic hazards
in threshold gate networks. Eichelberger has proved that logic haz-
ards are not present in a sum-of-product (product-of-sum) realiza-
tion which realizes all of the 1(0) prime implicanis of the given
Boolean function.! Logic gates of the AND or NOR (OR or NAND)
variety realize single 1(0) prime implicants; therefore, a gate is re-
quired for each 1(0) prime implicant to be realized, and the problem
of eliminating logic hazards is straightforward.

A single-threshold gate, however, realizes a number of prime
implicants. Moreover, the number of prime implicants realized by a
network that incorporates more than a single-threshold gate is not
uniquely determined either by the Boolean function being realized
or by the number of gatesinvolved. As a result, it is often possible to
control the prime implicants and hence the hazards without greatly
increasing the number of gates required. In fact, in sonie cases no
additional gates are required.

Three methods are presented for determining if a given threshold
realization contains any logic hazards, the first of which is an exten-
sion of McCluskey’s work.t) Two methods are then presented for

synthesizing logic hazard-free threshold realizations. The first |

method is based on the tree method of synthesizing threshold gate
networks, whereas the second method is based on expressing the
given Boolean function as a sum of threshold functions.

Index Terms—Combinational logic, logic hazards, static hazards,
threshold networks.

THRESHOLD DEFINITIONS AND THEOREMS

VHE-NOTATION of Lewis and Coates!V will be
T used and will be briefly reviewed here.

A threshold gate has binary inputs x1, - - + , %,
and a binary output y. The threshold gate has an internal
thréshold 7', and each binary input has an internal
weight a;. Let {0, 1} denote the collection of 2" n-tuples
of 21, - - -, xa. Associated with each gate is a function f
which is defined on {0, 1}" as '

1) = 3 ai(s)

=1

where p&E {0, 1 } » x;(p) is the value of x; at p, and where
normal arithmetic operations are used. The function fis
called the separating function.

If Fis a Boolean function defined on {0, 1}7, then Fis
linearly separable if and only if there exist numbers
a1, ++ 8. and T such that f(p)>T<F({p)=1 and
f@)<T=F(p)=0.

Manuscript received May 11, 1967; revised November 13, 1967.
This work was supported by NSF under Grants GP-2724 and GK-
1146X, by NASA under Grant NGR-44-012-049, and by the Joint
?ervxc7es Program under Grants AF-AFOSR-766-66 and AF-AFOSR-

A. B. Howe was with the University of Texas, Austin, Tex. He is
now with the Systems Development Div., IBM Corporation, Pough-
keepsie, N. Y.

_C. L. Coates is with the Laboratories for Electronics and Related
Science Research, University of Texas, Austin, Tex.

The Boolean function F, which is realized by a thresh-
old gate with threshold 7" and scparating function [,
can be represented as

F(xla cr ,x,,) = (f(xl: t

= (@11 +

©y &n))r

vt —*“ a‘n“’n)'['-

The collection {F(p), f(»)} is called the map of F.
Let » denote the smallest f(p) such that F(p)=1 and !
the largest f(p) such that F(p)=0. A map of F is sepa-
rated if I <u. The gap {or a separated map is the set of
real numbers 2 such that I <z<u and is denoted by u:l
If F is linearly separable, then for some f it follows that

I<T<u. In terms of this f, the previous expression can
be written as

F(xh ttt, xn) = (a’lxl']" cee anxn)u:l = <f>ul

Obviously, all Boolean functions are not linearly
separable; hence, they cannot be realized with one thresh-
old gate. When such a case occurs, the multigate reali-
zation can be represented as '

/ m
Uphr = X pota))

where u:] is the gap of the output gate, y, the Boolean
function realized by the 7th input, and. B, the associated
weight.

When using the reconstruction technique of Lewis
and Coates,!! the addition of a gate is accomplished by
using the following theorem.

Theorem A:

[(f)uil] = [<f+ a'0>u:l] = [<f+ a'1>u+u:l+a]

where 0 and 1 represent constant Boolean functions.

" The constant functions, in Theorem A, represent
gates which have been added. It has been shown! that
the separating functions for these can be 0= (0)..¢ and
1=(0)0:co-

Lewis and Coates!! give a step-by-step procedure for-

the tree realization technique and numerous examples.
Examples 3 and 4 also will illustrate this technique.

DerFiNITIONS CONCERNING THE BOOLEAN
FuncTtioN F AND ITs REALIZATION

Let p represent a variable on {0, 1}", where the 7th’
component of p is the variable x¥. In this space x} can
be represented by either the literal x; or Z; since ;=1 if
and only if #;=0.

A subcube K of {0, 1}" is denoted by {p|xf=b,
xy =bgy - v, x;=bn,}, where b;& {O, 1}. For a Boolean
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function F: {0, 1}»—1{0, 1}, 1 and 0 subcubes are de-
noted by K; and K, respectively, and when these are
prime implicants they are denoted by 1 and Py, respec-
tively.

McCluskey®™ has shown that for detecting logic
hazards it is necessary to draw a distinction between the
literals of the Boolean {unction and the literals of the
realization, the distinction being that in the realization
the literal x; and its complement must be treated inde-
pendently of each other, whereas in the Boolean func-
tion. F this is not true. The necessity of this distinction
is based on the fact that during an input state change it
is possible for the input lines x; and %, to be temporarily
the same and, as shown in Huffman! and McCluskey,
it is exactly this property that causes a hazard. Hence-
forth let F* denote the transient or output function that is
realized by a given realization when x; and its comple-
ment are treated as independent variables.

When considering the Boolean function F, the“barred”
literal %; will be used to denote the complement of x;.
The literals x; and %; are not independent of each other,
whereas when considering the realization of F, the
“primed” literal ] will be used to denote the input literal
which is independent of x; but which would be the com-
plement of x; if an input state change is not occurring
(i.e., the input literals corresponding to %; are repre-
sented as x}). )

For a given realization, F* can be obtained by replac-
ing all complement {—) variables and operations by
the corresponding prime (') variables and operations
where the only allowable identities are (x) =x,
(x4y+ -« +a)=x-y -+ -2, and (x-y---2)
=x/+y/+ o +Z’.

- Since F* may contain both x; and x/, the domain of the
transient function is {0, 1}?*. Hence, when studying
hazards the problem becomes that of distinguishing
between the properties of F aud the properties of Ft,
Before continuing, note that since x{ =, for the steady
state condition, it follows that if x] is replaced by %; in
the function F¥, and if the usual Boolean operations are
used, then F can be obtained from F*.

Consider now the rélations between F* and F. Let ¢
represent a variable on {0, 1}2", where the (21— 1)th
component is x; and the 27th component is x7, and where
x; and x] are considered as independent of each other.
Thus g is a function of xy, x}, %2, X3, * + * , %p, %0

Definition 1: For each point p of {0, 1}# such that
p=(x{=b, - - -, x)=b,), there is a point g, of {0, 1},
called the 4mage point of p, such that g,= (x} =by, =}’
=51, - '1x:=bn;x:,=5n)- .

For example, consider the point p=(x;=1, x=0,
x3=1) of the space {0, 1}5. The image point is g,
=(xy=1,21=0,0=0,x}=1,x,=1, x5=0).

Definition 2: For each subcube K of {0, 1} such that
K={p|at=by, -, xk=b,}, there is an image subcube
Sof {0, 1} such that S= {g|xf=bs, x}=8;, - - -, «&
=bpn, 2 =bn}. :

For example, consider the subcube K= {p] x=1,
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x3=0} of {O, 1}”. The corresponding image subcube is
S= {qlxl=1,x{=0,x3=0,x‘f,=1}‘

Obviously, if a subcube K contains 2% points, the
image subcube S will contain 22— points and 2% of
these points will be the image points of the points of K.

Note that since the inputs x; and &7 in a realization
may not change simultaneously, it is possible for the
two to be temporarily the same. Hence the realization
(w1 is actually defined on the space {O, 1}?". In fact,
now that an image point and output {function have been
defined, a realization can be redefined as follows.

Definition 3: Let I be an arbitrary Boolean function
and /I the output function of an arbitrary realization
(fYur of I, where F and F* are defined on {0, 1}~ and
{O, 1}2_", respectively. Let p be an arbitrary point of
{0, 1}" and g, the corresponding image point. Then
(fYu:1 is said to realize F if and only if for every

pefo, 1}»
F(p) =1efg) 2T

F(p) =0e=f(g) < T

(i-e~7 Fl(q:r) =1)
(i-e-;F t.(qZ)) = 0)~

Note that Definition 3 does not place any require-
ment upon the nonimage points of {0, 1}?» Hence
F(q), for the nonimage points, can be either 1 or 0. These
points, however, do determine the hazard conditions of
the realization.

Definition 4: Let F* be the transient function of an
arbitrary threshold realization {(f).... A 1(0) subcube of
Ftis a subcube S of {0, 1}2" such that F'(g)=1 (0) for
all g&8.

A logic hazard, first defined by Eichelberger,!¥ can be
defined in the following equivalent manner in terms of
F.

Definition 5: A'realization (f),.; of F contains a logic
1(0) haszard within the 1(0) subcube Ki(Ky) of Fif and
only if the corresponding image subcube Sy (S,) of
{0, 1 }2" is not a 1(0) subcube of F¢, where F'is the tran-
sient function of {(f)u:1

Consider the function Ff(x1, x§, - - -, %5, x5) and the
subcube S= (g]xlzbl, xi=b1, -+, Xn=bm xh=bn}.
The function which results when x; and x] are set equal
to b; and b;, respectively, in the function F*, is referred
to as a reduced funcition of F* and is denoted by Fi(S).
Fi(S)=1(0) implies that the reduced function Fi{(S) is
the constant function 1(0). By using the idea of reduced
functions, Definition 5 can also be expressed in the fol-
lowing equivalent manner.

Definition 6: A realization (f),.; of F contains a logic
1(0) hazard within the 1(0) subcube Ki(K,) of F if and
only if Fi(5y) =1 (F{(Sp)0), where Si(S¢) is the image
subcube of K;(K,), and F* the transient function of .

(f)url-

DEeTEecTION OoF Locic Hazarps—MeTHOD 1

The following theorem will now give a method for
determining if a realization {f)..; of F contains any logic
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cube within which the logic hazard occurred. The fdl-
lowing procedure can be used to determine if a realiza-
tion contains any logic 1(0) hazards.

Procedure 1:

1) Determine the transient function F* of {f)...

2) Determine the set of 1(0) prime implicants
{PI{P]) of F.

3) Determine Ft(SY), (F!(SE)) for all Si(Sp), where
Si(SY) is the image subcube of Pi(Py).

4) The realization (f),.: does not contain a logic
1(0) hazard within Pi(P}) if and only if F¢(S})
=1(F(S) =0).

. The following example will illustrate Procedure 1.
Example 1: Consider the Boolean function

F(xy, %o, %3, %1) = 2120083 -+ #1230 + %1%oxs -+ TiFaxe. (1)

The Karnaugh map and a realization are given in Fig. 1.

The problem is to determine if the given realization
contains any logic hazards. From Procedure 1, the first
step is to obtain F¢. In this case, Ftis given by

Ft = zyxox] + of x5 24 -+ x{ x4 23
4+ xfxf 2 + 2! xf x5 + x1w374. 3]
Table 1 contains the set of 1(0) prime implicants
{P‘,} ({P,‘,}) of F and the corresponding set of reduced
functions {FY(SH}, ({F(SH]).
For example, from Table I, Pi= {p]x2=0, %=1,
x4=_1}; then Si= {g]x2=0, xp=1, x3=1, 25=0, %=1,
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o
00 01 11 10
00 0 1 1 1
01 0 1 0 0
Xix2
1141 )1]oe
10 0 L] 1 4}
XX
(a)
Fig. 1. Karnaugh map and realization for Example 1.
hazards. The proof follows directly from Definitions 2 TABLE 1
and 6. TABLE For EXAMPLE 1

Theorem 1: Let {P!} ({P4}) denote the set of 1(0)

CTL T ; : y Py ,
prime implicants of F and {Sﬁ}({S{)}) the correspond- — _
ing set of image subcubes in thespace {0,1}2" Arealiza- ¢ % % m 2 FUS) @) = o @ ox  FUS) [
tion (/)1 of F will not contain any logic 1(0) hazards if 1 1 1 0 — 1 6 — 1 1 0 0 3
and only if F{SH)=1, (F(Sy)=0) for all Si€{Si}, % 8 o (1) n % g (1) (1) _(;-9— s g
(S{;E{So}), where F!is the transient function of (f)... 4 — 011 sty 4 —00 0 0 1

Summarizing, Theorem 1 can be used to determine if g (1) ry 1 % 1 g (1) 1 % ry 8 31
a given realization contains a logic hazard. If it does, 7 11— 1 44, 3 10— 0 s 3
then Definition 5 or 6 can be used to determine the sub- 8 —1 01 mtx 2 0—009 0 3

x4=0}. Hence the reduced function F!(S}) is Fi(x;=0,
ah=1, x3=1, x§=0, xs=1, x;=0) =x]-}x1.

Referring to Table I, F1(SY)s=1, F(S) 5«1, Fi()#1,
and Ft(SZ) 0. [For the present, disregard the columns
labeled f(¢}) and f(¢})]. From Definition 6, the rcaliza-
tion will contain a logic 1 hazard in Pf, P}, and P} and a
logic 0 hazard in Pi. '

- Procedure 1 requires the calculation of the transient
function F*and the calculation of all of the prime impli-
cants of F. McCluskey! has presented several alternate
methods for determining if a given realization contains
any static hazards, all of which require the calculation of
Ft, These methods can be readily extended to include
logic hazards and for further detail see McCluskey.!

Before continuing, note that if the realization con-
tains negative weights and/or inverting gates, one can-
not determine F! by successively applying the 2?* pos-
sible combinations of {0, 1}2» as inputs to the realiza-
tion and determining the value of the output for each.
In terms of the separating function this gives the sur-
prising result that

Fig) = 1(0) % j() = «(f(9) £

or
flg 2 u(f(g) < 1) # Fi(g) = 1(0)
where g& {0, 1} 2=
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For example; consider the point g=(x,=0, x{=0,
x2=0, xj=1, xy=1, 2{=0, x4=1, x;=0). Relerring to
Fig. 1(b), fi{g) =0; hence, the output of G is 0. Also,
falg) =1; hence, the output of Gy is 1. Likewise, fo(g) =5;
thus, the output of the realization is 1. Now referring to
(2), F(q) =0. Hence F*(g) =0, whereas f(¢g) > u.

The next section will be concerned with modifying the
given realization {f)..; in such a manner that F* can
always be obtained by considering only the 22” possible
input states. This modification will, in many cases, give
an easier method for determining F*. It will also yield a
method for determining if a realization contains any
logic hazardswhich does not require the calculation of F*.
But even more important, it will develop the funda-
mentals which will be needed to synthesize hazard-free
threshold gate networks.

DEeTECTION OF Locic Hazarps—METHOD 2

Lemma 1 concerns the modification of a given realiza-
tion {(f)..; and Theorem 2 provides the desired results.
Proof of each are given in Howe and Coates.!?

Definition 7: A threshold realization which does not
contain any negative weights or inverting gates will be
called a positive threshold realization and will be denoted
by (Hai-

Lemma 1: For each realization (f)..; of F there exists
a unique corresponding positive realization (f)z.j of F
such that the transient functions of the two are the
same,

Because of Lemma 1 no loss of generality results by
considering only positive realizations. Moreover, Howe
and Coates!? give a procedure for converting a given
realization (f),.; to the corresponding positive realiza-
tion (f)za.

Definition 8: Consider the subcube S= {g|x;=0,
x;_—_[;h .
Define ¢; as the element (% =5y, x{=b1, + + + , Xn=">n, x5,
=8, Xmy1=1, + + +, x,=1, x,=1).and g, as the element
(r1=0bf, x{=0b1, *+ * i Xn=bm, %p=bm, ¥m11=0, + - -, %,
=0, x,=0). The elements g, and ¢ will be called the
minimum and maximum elements of S, respectively.

A theorem can now be given by which it can be deter-
mined, without the calculation of F*, if a given realiza-
tion contains a logic hazard within .a specific subcube.
The proof is given in Howe and Coates.["

Theorem 2: Let (f)u:1 be an arbitrary realization of F,
and (f)zj the corresponding positive realization. Let

P ({PL]) be the set of 1(0) prime implicants of F,

St}({St}) the corresponding set of image subcubes,
and {gf,} ({g‘l) the corresponding set of minimum (maxi-
mum) elements. The realization {f)..: will not contain
any logic 1(0) hazards if and only if f(g}) > a(f(¢}) <I) for
all € {qb} (@€ {ai]).

The following procedure will outline a method for

determining if a given realization contains any logic
1(0) hazards.

“y Xpm=bm, xh=bn} of the space {0, 1}

Procedure 2:

1) Determine the set of 1(0) prime implicaniy
{PL({Ps)) of F.

2) Obtain the corresponding positive realizatioy
(N of {Hur

3) Determine f(g5) (f(g1) for all g5(q1), where gt (4!
is the corresponding minimum (maximum) image point
of Pi(PY).

4) The realization (f)..: will not contain a Jlogic
1(0) hazard within Pi(Pg) if and only il f(¢))>a,
(f(gh) <I).

Suppose that we apply Procedure 2 to (1). The set of
prime implicants are given in Table I and the corre.
sponding positive realization is given by

(%1 + 2Zxg -+ 24 F 521+ 22 -+ Za)sez
+302%; + %2 + #2064 3)

Now consider step 3). For example, consider the 1 prime
implicant P} The corresponding image subcube is
St={g]|2=0, xj=1, xy=1, x5=0, x4=1, x{=0}. Hence
the corresponding minimum image point is g5= (x;=0,
£1=0,2%=0,5x}=1,%3=1,%;=0, x4=1,2,=0). From (3),
F(g8) =4. Since # =35, it follows from Theorem 2 that the
realization will contain a logic 1 hazard in Pj.

Table 1 contains f(¢5) for each PL&F and f(g}) for
each P{E F. As can be scen, the results of Procedure 2
agree with those of Procedure 1.

DeTECTION OF Locic Hazarps—METHOD 3

Methods 1 and 2 for detecting logic hazards were
based on either F* or the input—output relations of the
realization. A method will now be given which will be
based on the structure of the realization. As will be seen,
this latter method is inferior to the previous two for
detecting logic hazards; however, the results obtained
from this method are needed to obtain a theorem for
synthesizing a hazard-free threshold network.

Definition 9: Let {f}..; denote an arbitrary realization
of the Boolean function F, and B a set of gates contained
in (f)x:1. The set of gates B will be defined as an oufpul
connected subset of gates if B contains the output gate of
{f)u:1 and, excluding the output gate of {f),.;, the output
of each gate in B is an input to another gate in B.

For example, in Fig. 1(b) the sets {Gy, G,} and Y6l
are output-connected subsets of {f..;, whereas the set
{G), G.} is not.

Definition 10: Let G; denote an arbitrary gate in the
positive realization (f);j, and B* an arbitrary oufpul-
connected subset of (f);4. Also, let S be an arbitrary sub-
cube in the space {0, 1} 2" with minimum element go and
maximum element gi. The set B* is defined as a 1
branch of {f)zq which realises S if, when (f)z4 is moditied
such that all gates not in B* have 0(1) output, then the
value of f(go), (fi(q1)) for the modified realization satis-
fies the condition fi(ge) > @:, (fi(q) <o) for all G,:EB*.
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For example, consider the realization of (3), which is
: Go Gl
(P = (w1 + 205 + 204 + 5(x; + a3 + &a)see

G,
+3(251 + Xa + 553)3:2)5:4~

Suppose one wishes to determine if the set of gates
{Go, Gi} is a 1 branch which realizes the subcube S
= {g{xlzl, x{=0, 2o=1, x53=0, x3="0, x;;:l}. Accord-
ing to Definition 10, in order for {Go, Gl} to bealtl
branch which realizes S the condition fi(go)># and
Fo(go) > ity must exist when the output of G, is 0. Under
the condition G,=0, the modified realization becomes

Go Gl
(%1 -+ 275 + 204 + S5{x1 + x2 + Za)zz + O)siae

The point go is (x1=1, x1=0, 22=1, 2;=0, x3=0, x3=1,

-x4=0, x;=0). From the preceding equation, fi(gs) =23

and fo(go) = 6. Thus from Definition 10, the set {Go, Gi}
is a 1 branch which realizes S.

The following lemma will give a relationship between
the term f(g), (f(¢1)) and a 1(0) branch.

Lemma 2: Let (f),. be an arbitrary positive realiza-
tion of F. Also let K1(K,) be an arbitrary 1(0) subcube
of F, the set {g,,}l({gp}o) the corresponding set of image
points of K;(Ky), and ge(g:) the corresponding minimum
(maximum) element of K1(K,). Then f(qo) >4, (f(q1) <3
if and only if there exists a 1(0) branch Bi(Bs) of (a4
which realizes all ¢, & {gp}l({gp} 0)-

Proof: First we will prove that all ¢,& {g,]}l are
realized by a particular 1 branch B; implies that
f(go) > 4. This result will be proved by induction.

Let G; be an arbitrary gate of B; which is on the r logic
level of (f);j. Let G; be an arbitrary gate of By such that
its output is an input to G; (i.e., G; must be on the r4-1
or greater logic level). Let K;= {plx’frb;, I
x}:=b,} be an arbitrary 1 subcube of F.

Assume that Lemma 2 is true for all G; (i.e., assume
Fi(ge)>u.). Thus the output of G; is not a function of
Xty x;n+17 R 2 x?’t

Now consider the independent inputs to Gj;. Let &;
denote an independent input to G;. Assume that G; does
not have both #; and its complement £ as inputs, which
is true for all gates. From the hypothesis of Lemma 2, it
is known that the output of G;is a 1 for all ¢,& {g,};.
Hence there exists a ¢, for which &,a=1, -+ -, £,=1
and some other g, for which #£,41=0, + - -, £,=0 such
that the output of G; is 1 for both. Thus the output of
G; is not a function of 4,,,, - - -, #. Now since the
corresponding complements &4, - - -, £, are not inputs
to G; and since the output of G; is not a function of
Xmtly Xpgty * ° 4 Xu, %, it follows that the output of G; is
not a function of %, 41,%5 11, * * * 5 %a, %5 Thus f;(go) > @1;.
Hence we have proved that if Lemma 2 is true for all G,
itis true for G;.
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Next consider an arbitrary input gate of the branch.
Since for the modified realization (i.e., all gates not
contained in B; have 0 outputs) the gate contains only
independent inputs, and since it does not contain both
x; and a3, it follows by the preceding reasoning that
Lemma 2 is true for all input gates of B,. Thus it follows
from induction that f(go) > .

Next it will be proved that f(g,)>u, implies that all
¢»< {gp}1 are realized by the same 1 branch.

First, assume f(go) > #; hence, the output of (f)z71s a
1 at go. Let B* be the largest output-connected subset of
gates that have unit output at g,. Clearly this is non-
empty. Since all coefficients are positive and no inverters
exist in the realization, then the gates of B* will have
unit output for all ¢&.5y, where S; is the image subcube
of K3, independent of the outputs of the gates not in B*,
Hence B* is a 1 branch which realizes all ¢&5;, and
hence all ¢,€ {g,}1.

The proof concerning the inequality f(gi) <1 is similar
and will be omitted.

Thecrem 3 follows directly from Lemma 2 and the
proof of Theorem 2.

Theorem 3: Let {f)u:: be an arbitrary realization of F,
and (f); the corresponding positive realization. Also,
let K,(K,) be an arbitrary 1(0) subcube of F, and the
set {qp}l({q,,}o) the corresponding set of image points
for all pE K (K,). The realization (f),.; will not contain
a logic 1(0) hazard in K (K,) if and only if there exists a
1(0) branch Bi(By) of (f)z:7 which realizes all ¢,& {g,}:
. ( {QP} 0)-

Summarizing, we have proved the following facts.
Let K« be an arbitrary 1(0) subcube of F, and S« and
go(qy) the corresponding image subcube and minimum
(maximum) element, respectively. An arbitrary realiza-
tion {f).:2 of Fwill not contain a logic 1(0) hazard within
Kee Fi{(S=) = 1(0)=f(g) = %, (f(¢©)<D), if and onlv if
there exists a 1(0) branch Bi(By) of (f)z] which realizes
all of the image points of K¢, where (f);is the corre-
sponding positive rzalization.

As in the preceding cases, a theorem can now be given
for determining if a given realization contains any logic
hazards. The proof follows from Theorems 2 and 3.

Theorem 4: Let (f)..1 be an arbitrary realization of F,
and (f)..1 the corresponding positive realization. Also let
{PL1({P3}) be the set of all 1(0) prime implicants of F,
and {{g:}1}({{g,}}) the corresponding collection of

sets of image points. The realization (f)..; will not con-

tain any logic 1(0) hazards if and only if there exists a
1(0) branch B (Bg) of (f)3] which realizes all ¢,& {g,}}
“({g10) for all {g, i€ {{a, )1}, ({anfe€{{a}s])-

Example 2 will illustrate the application of Theo-

rem 4.
Example 2: Again consider the realization of Fig. 1(b).
From (3) the positive realization is

U)aj = <xl + 205 4 2244+ S{e F v F Fa)se

43251 + 22+ Tadadsia 1G]

96
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TABLE 11
TABLE FOR EXAMPLE 1

J pi @ Bt
X1 X2 X3 X4 X1 xl' xgxz'x3x3'x4x4'

1 1100 10100101 {G1, G}
2 1101 10100110 (GL, Go)
3 1111 10101010 o)
4 1011 10011010 {Go)
5 0101 01100110 {Go, G2}
6 0001 01010110 Go, G2}
7 0011 01011010 {Go, G2}
8 0010 0101100t {Go, Ga}

Only the logic 1 hazards will be considered. Therefore,
Table IT will contain only the points p; of {0, t}7 such
that F(p;) =1, the corresponding image points ¢}, and
the set of 1 branches which realize each ¢). Actually, in
this example each point ¢} is realized by only one 1
branch.

In T'able I, the points p,;& {0, 1 }" such that F(p;) =1
can be obtained from Fig. 1(a), whereas the correspond-
ing 1 branch can be obtained from (4).

Consider the 1 prime implicant {p] xm=1, %=1,
x3=0}. The corresponding image points are ¢, = (=1,
x1=0, xp=1, x3=0, x;3=0, z{=1, x:=0, x;=1) and
= (=1, x1=0, xa=1, x3=0, =0, x5=1, xs=1,
xy=0). Referring to Table Il, both image -points are
realized by the 1 branch {Gl, Go}. Therefore, by Theo-
rem 3, the realization will not contain a logic 1 hazard
within {p|zi=1, %=1, 2,=0}.

Next consider the 1 prime implicant {p|x;=1, x,=1,
x¢=1}. The corresponding image points are ¢ and g.
Referring to Table 11, ¢% and ¢} are realized by the 1
branches {Gi, Go} and {Go}, respectively. Hence from
Theorem 3, the realization will contain a logic 1 hazard
within {plm=1,2=1,%,=1}.

Likewise, it can be determined that the realization
will contain a logic 1 hazard within the 1 prime impli-
cants {p|ws=1, x:=0, x4=1} and {p|a:=0, x3=1,
x4:1 .

As previously mentioned, the application of Theorem
3 or 4 to determine if a given realization contains any
logic hazards is considerably more involved than Proce-
dure 2. Hence it is doubtful if Theorem 3 or 4 would be
used to detect logic hazards. However, Theorem 4 will
be used, in conjunction with a later lemma, to derive a
theorem for synthesizing a hazard-free threshold net-
work directly from the Boolean function F. How this is
accomplished is the subject of the next section.

SynTuEsis OF HAZARD-FREE THRESHOLD NETWORKS

This section will be concerned with synthesizing posi-
tive threshold gate realizations which are hazard free.
As previously mentioned, however, positive weights can
be changed to negative weights, noninverting gates can
be changed to inverting gates and the resulting realiza-
tions will also be hazard free. Hence one can obtain any
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type of desired hazard-free threshold realization. The
following synthesis technigque will be primarily based on
the multigate realization technique of Lewis and
Coates.? However, at the end of this section, an alter-
nate method is given for obtaining a two-level hazard-
free threshold realization.

Since the material will be largely concerned with the
7 level of the function tree, the following terms are
needed. Let {g,} be the subset of {0, 1} 25 such that g,
is the image point of p for each p& {O, 1} Consider a
function tree for a Boolean function F. A given position
on the » level of the tree corresponds to a specific p of
{0, 1}~ in that each position corresponds to a unique
reduced {unction F(p), where p is the subcube of {O, 1 }"
consisting of the single point p. Moreover, any realiza-
tion of F(p) must have an output function F!such that
Ft{g,) = F(p). Thus the position corresponding to p also
corresponds to ¢,.

Now consider the reconstruction procedure of Lewis
and Coates.!! A separating function f» is selected which,
with appropriate gaps u™:I*, will realize the n-level re-
duced function F{q,) = F(p). Unless specifically indi-
cated, such n-level realizations (f*)us.;» will not contain
negative weights or inverters. Appendix I gives several
possible n-level realizations.

Consider some n-level realization {f*),*.~ If G; de-
notes an arbitrary gate of (f*}un.im, then let 37 denote the
Boolean function realized by G;. Note that 37 is a con-
stant function of either 1 or 0. Referring to Appendix I,
an example of an n-level realization and the correspond-
ing Boolean functions is

Go G, Go.

(fn>u7'=l" = <0 + 61<0 + B2<0>oc'-v>°'-—~w>ﬂ1=-—w (S)
where v§=0, 97=1, and yg=1.

The following definition will define a set of constants
which can be associated with an #n-level realization.

Definition 11: Consider an arbitrary n-level realiza-
tion {f")un.n. Let G; and G; denote arbitrary gates of
{f*)un.m such that the output of G; is an input to Gj.
Define C; as

Ci= 2 Byi+ &

i=1
where $; is the weight of input »7 to G;, and k; the weight
of a constant input to G;. ’

For instance, consider (5). The set of constants is
C2=0, C1=0, Cozﬁl.

The following definition will define a branch which
corresponds to the » level of the tree. The definition is
similar to the previous definition of a branch except
that it is defined for an n-level realization {f*)us.sn.

Definition 12: Let G; denote an arbitrary gate in
{f*)un.n and B* an arbitrary output connected subset of
{f*}un.n. The set B* is defined as an n-level 1(0) branch
B}(Bp) and is said to realize the constant function. 1(0)
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if, when (f")us 1n is modified such that all the gates not
contained in B¥ have 0(1) output, then C; for the modi-
fied n-level realization satisfies the condition C;>u}
(CSRYG.&B*.

As an example of an n-level 0 branch, consider the
following n-level realization, which can be obtained from
Appendix I.

Go Gy Gy
(/n>u"; m = <0 + B]_(O + 62(())0:—-«:)&:32)&0:0'

Consider the set {G, Go} as a possible n-level 0 branch.
According to Definition 12, the condition C,</; and
G <[} must exist when the output of Gais a 1. For this
condition, the modified n-level realization becomes

(O + 161<0 + ﬁz)w:ﬁz)w:m

Hence Cy=f;and Cy=0. Since ; =f; and Ly =0, it follows
that the set {G, Gy} is an n-level 0 branch.
" The following lemma will now give a relationship
between n-level branches and branches of a positive
realization. The lemma assumes a configuration of gates
for the n-level realization such that no void ranges occur
during reconstruction (i.e., no additional gates are nec-
essary during reconstruction).
Lemma 3: Consider an arbitrary point ¢,& {0, 1}2»
such that Fi(g,)=1(0). Assume that no void ranges
"occur during reconstruction. Given that a set of gates
B* is an #n-level 1(0) branch B}(Bj) which realizes
Fi(g,) on the n level of the tree, then B* is a 1(0) branch
By(B,) which realizes g, in the final realization.
Proof:"\/Ve will prove this result by induction. Let
G; be an arbitrary gate of B* which is on the 7 logic level
of {f*)un s, and hence of (f);j. Let G; be one of the m
arbitrary gates whose output is an input to G; (i.e., G;
must be on the #<1 or greater logic level). Then the
n-level realization for G; can be expressed as

(i) n = <0 + 2By + 2 ny':'> nn
ujilj =1 f=m’L1 ujily
where 1<i<m/&G:EBF and m'+1<Li<meGEBL.
Referring to the previous equation, when all G,& B}
have 0 output, then ,
C;= ZBL
it

Since B* is an n-level 1 branch, it follows from Defini-
tion 12 that

CCi= 2B > u; (6

From properties of reconstruction it is known that if
Fi(g,) =1, then

u D am(g) > 0
k=1
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where >0, «F is a literal of &y, and #; is the upper gap
for G, in the final realization.

Assume that Lemma 3 is true for all G; where
1<i<m'. Thus all G;for 1 <i<m’ are elements of B, for
the point g, in the final realization. Therefore,

) = 20 aey) + 2 B ®)
k=1 T==1
when all G:& B; have 0 output.
From (6), (7), and (8) it follows that

ff(q:r) 2 #;

when all G;€ By have 0 output. Hence G, is an element
of By for the point ¢, in the final realization.

Now consider an arbitrary input gate G; of B}. For
this case, ] =0. It follows from the preceding reasoning
that the gate will be an element of B, for the point ¢, in
the final realization. Thus, it follows from induction that
By will be a 1 branch for the point ¢, in the final realiza-
tion.

The proof concerning 0 branches is similar and will be
omitted. ’

Definitton 13: Let (f)uu denote an arbitrary realiza-
tion of the Boolean function F. Consider the real num-
bers #’ and I’ such that u>u'>V>[ The gaps u:/l,
w11, or u’:l" are defined as reduced gabs of u:l.

Consider a realization (f)..; of the Boolean function F.
Obviously, #:] can be replaced by a reduced gap and the
Boolean function F is still realized, provided 7 is prop-
erly selected. For instance, consider the gate G, of (5)
which has an n-level gap of ;1 — . A possible reduced
gap is 0: — . The n-level realization then bacomies

G, Gy Gs
<0 + B1<O + 32<0>w:6>02 —w)o:—~ao- (9)

This still realizes the Boolean function 1 and {Gl, Gn} is
still an #-level 1 branch. However, now by Definition 12
the gate Gy is also an n-level 1 branch, where before it
was not. Hence by Lemma 3, if (9) is used to realize a
specific Ft(g,) on the zn level of the tree, then the 1
branches {G,} and {G,, G} will both realize ¢, in the
final realization. Thus, reduced #n-level gaps provide a
means for obtaining a final realization such that the
point g, will be realized by more than one branch.

The value of a point ¢, being realized by more than
one branch follows from Theorem 3. For example, let
K= and K# be two 1 subcubes of F which have the set of
points {p;} in common, and {¢}} the corresponding set
of image points. Let S* and S? bé the corresponding

mage subcubes. Clearly {¢}} belongs to the set of points
common to S* and SP. Assume that for some positive
realization S« and 5% are realized by the 1 branches Be
and BS, respectively, where B« B, It follows from
Theorem 3 that the realization will not contain a logic 1
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hazard within K¢ and K? However, note that the
points of ¢} are realized by both B~ and BP,

Once the set of n-level gaps is chosen, the reconstruc-
tion process of Lewis and Coates!' is a technique for
obtaining the coefficients of the independent input vari-
ables for each gate of the network. In some realizations
the restricted u-level range, caused by using a reduced
n-level gap for some arbitrary F(g,), will not have any
effect upon the coefficients. When such a case occurs,
the reduced n-level gap is referred to as an unnecessary
reduced n-level gap. However, if the reduced n-level gap
does effect the final coefficient, it is referred to as a
necessary reduced n-level gap. Example 3 illustrates
both types of reduced n-level gaps.

The following theorem can now be used for synthe-
sizing a logic hazard-free threshold network directly
from the Boolean function F.

Theorem 5: Let {Pi}({Pg}) be the set of 1(0) prime

({ {gp}é}) the corresponding
collection of sets of image points, and {{F'(g,)}i},
({ {F‘(gp)}é}) the corresponding collection of sets of
n-level reduced functions. A final realization (f)zjof F
will not contain any logic 1(0) hazards if the n-level gaps
are assigned such that there exists at least one n-level
1(0) branch which realizes all Ft(g,) & {Fi(gp)}},
()} for all [Fla) e {Fa) i, ([
E{ {F‘(gp)}é}) and reconstruction is possible without
adding any additional gates.

Proof: Let P; be an arbitrary 1 prime implicant of
F, {gp}{ the corresponding set of image points, and
{ Ft(g,) }! the corresponding set of #n-level reduced func-
tions. Assume that the n-level gaps are assigned such
that all F‘(gp)E{F’(g,,)M are realized by the same
n-level 1 branch, and that reconstruction is possible
without void ranges. By Lemma 3, all ¢,& {gp}{will be
realized by the same 1 branch in the final realization,
Hence by Theorem 3, P; will not contain any logic 1
hazards. '

The proof concerning 0 prime implicants is similar
and will be omitted.

Examples 3 and 4 will illustrate the application of
Theorem 5. However, several additional facts must be
considered first.

In general, a set of n-level gaps, which will yield a
hazard-free solution, will not be known. Therefore,
suppose that while trying to obtain a hazard-free solu-
tion, the first condition of Theorem § is satisfied but the
second condition is not. Two alternatives exist: either a
procedure analogous to Reconstruction I11 of Lewis and
Coates!!] can be used, or an additional threshold gate or
gates can be added in such a way as to remedy the
situation.

Only the second alternative will be considered here.
Assume that an inconsistency occurs for a gate G; on the
k level of the tree. Normally one determines the incon-
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sistency, uses Theorem A to add the necessary gate or
gates so that the inconsistency is removed (sce Lewis
and Coates!'}, and then continues on up the tree. How-
ever, if the final realization is to be logic hazard free,
Theorem 4 must also be satisfied; hence, the application
of Theorem A is restricted in the following manner.

The set of n-level gaps consisting of the n-level gaps
for the additional gate(s) plus the changed n-level gaps
for the previously chosen gates must satisfy the first
condition of Theorem 5. In practice, the most straight-
forward procedure for satisfying this restriction of
Theorem A is the following.

Determine the inconsistency on the % level of the tree
and then, instead of adding gates on the k level of the
tree, add the gates on the n level of the tree so that the
inconsistency is removed from the k level of the tree and
the first condition of Theorem 5 is satisfied. The gates
that need to be added on the # level of the tree to re-
move the inconsistency of the % level can easily be de-
termined by tracing the gaps that caused the inconsis-
tency to the bottom of the tree. Example 4 will illustrate
this.

Assume that all additional gates are added in this
manner. It is proved in Howe and Coates!” that a final
realization can always be obtained with this restriction
on Theorem A. Clearly the final realization will be
hazard free.

The next fact concerns the application of Theorem 5.
To apply Theorem 5 it is necessary to associate each u-
level reduced function F(p)= F‘(g,) with a specific set
of prime implicants of F, viz., the set for which the cor-
responding point p is an element. For example, assume
p is an element of the 1 prime implicants P3, P§, and
Pl. Hence F(g,) must be associated with P3, PS,
and P7, in which case, Fi(g,) =1 can be labeled 13, i,
and 1; on the n level of the tree. A similar statement
exists for 0 prime implicants. Now from Theorem § the
final realization will be hazard free if 1) all n-level points
bearing the same label are realized by the same n-level
branch and 2) reconstruction is possible without addi-
tional gates. Examples 3 and 4 will illustrate this pro-
cedure. Also, Chapter 6 of Howe and Coates!™ gives an
algorithm for identifying the points at the boftom of
the tree.

The last fact to be considered is concerned with in-
complete functions. A function is said to be incomplete
if for some pE& {0, 1}", F(p) is not specified as either 1
or 0. Such p's are called don't ceres. This type of Boolean
function should also be considered when studying haz-
ards in threshold gate networks. A method has been
presented for synthesizing incomplete logical functions
by threshold gate networks.!! The method, in effect,
assigns the n-level gaps of the don’f care points to be
w0 :— . Therefore, when assigning the #n-level gaps
in accordance with Theorem ¥ (i.e., such that a logic
hazard will not occur) the s-level gaps of the don’t care
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points are assigned as e :— =, Unfortunately, how-
ever, by this method one has no control of the logic
hazards associated with the dou’f care points.

In summary, the following procedure is outlined for
obtaining a hazard-free threshold network.

Procedure 3:

1) Using the function tree, decompose F in the
usual manner.

2) Using the method previously described, identify
the reduced functions F‘(g,) at the bottom of the tree
with their associated prime implicants.

3) Referring to Theorem 5, assign the n-level gaps
such that there exists at least one n-level branch which
realizes all of the reduced functions F*(g,) which bear
the same label.

4) Reconstruct in the normal way. If no void com-
mon ranges occur, the final realization is hazard free;
if a void common range occurs, go to step 5).

5) Using Theorem A, add a sufficient number of
gates to eliminate the void common range. However,
the set of n-level gaps consisting of the n-level gaps for
the additional gates plus the changed n-level gaps for
the previously chosen gates must satisfy step 3).

6) Repeat steps 3), 4), and 5) until a final realiza-
tion is obtained.

The following two examples will illustrate Pro-
cedure .3,
Example 3: Consider the Boolean function

F = X1%9 + TaXs ’}‘ X3%4. (9)
The Karnaugh map is shown in Fig. 2. The problem is
to obtain a hazard-free threshold realization directly
from the Boolean function F by application of Theorem
5. The first step is to obtain the prime implicants of F.
These are obtained {rom Fig. 2(a) and are given in
Fig. 2(b).

Decompose F by removing %1, xs, %3, and x3, respec-
tively. The resulting function tree is shown in Fig. 3.
The prime implicants that each n-level reduced function
corresponds to are identified at the bottom of the tree.
For example the reduced function Ff(xi=1, x{=0,
xp=1, x5=0, x3=1, x3=0, x3=1, x;=0), henceforth to
be denoted by F:(10, 10, 10, 10), corresponds to Fj,
P32, and P

The next step is to assign the n-level gaps according
to step 3) of Procedure 3. Referring to Fig. 3, all of the
points labeled 1:(0;) should be realized by the same n-
level 1(0) branch, etc. Disregarding the terms in
parentheses, one such assignment is given in Fig. 3.

For example, consider the four reduced functions
labeled 14. The n-level reduced function F¢(10, 10, 10,
01) is realized by the n-level realization (0-42(0}w.0)0:—s
whereas the other three reduced functions labeled 1,
are realized by the n-level realization (0-F2(0)v:— e oio-
Hence Fi(10, 10, 10, 01) is realized by the #n-level 1
branch consisting of the gate {G,}, whereas the other
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x4=0} =Py {G1, Gul
@ (L) “{c)

Fig. 2. Karnaugh map, prime implicant list, and z-level branch
assignment for Example 3.

three are realized by the n-level 1 branches consisting
of both {Go} and {Gi, G,o}. Thus all four are realized by
the n-level branch [G,}. Similarly the n-level branch
which corresponds to each prime implicant of F is
shown in Fig. 2(c).

Fig. 3 shows that reconstruction is possible, and that
the final realization is ‘

rut = {5 + %2+ 2000 F 2(xq 3 235 + £odaa)ace

Thus the second condition of Theorem § is satisfied.
Therefore, the final realization will not contain any
logic hazards.

Consider the realization which results when
F*(10, 10, 10, 10), F*(10, 01, 10, 10), and F*(10, 01, 10, 01)
are assigned normal n-level gaps (see Fig. 3). This
assignment and the reconstruction changes caused by
this assignment are enclosed in parentheses in Fig. 3,
the final realization being

(s = (@2 + 21+ 2{xq + 225 F ZTodaiz)on

Note that the 1 prime implicant {plxlzl, x3=i} is
not contained in the latter realization. It will therefore
contain a logic 1 hazard. Also note that on comparing
the two realizations, the prime implicant can be realized
without requiring any additional gates. This is not
possible ‘with conventional elements such as AND, OR,
NAND, NOR, or relays (i.e., a conventional element can
only realize one prime implicant).

By comparing the two previous reconstructions, it
can be determined that the reduced n-level gap for
Fi(10, 10, 10, 10) is an unnecessary reduced zn-level gap,
whereas the reduced n-level gaps for F'(10, 01, 10, 10)
and F:(10, 01, 10, 01) are necessary reduced n-level gaps.
By definition, if a gap is an unnecessary reduced n-level
gap, the normal gap could be used and the final realiza-
tion would be the same. However, when the #n-level gaps
are being assigned it is not known whether or not a re-
duced n-level gap is an unnecessary reduced n-level gap.
Therefore, to obtain a logic hazard-free realization, the
best approach is to apply Theorem 5 and assume all
reduced n-level gaps are necessary reduced n-level gaps.

Example 4: Consider the Boolean function

F = %1% + Xixg + XoxXy4 + Aoy,

100
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The Karnaugh map is shown in Fig. 4. Again the
problem is to obtain a hazard-free threshold realization
directly from the Boolean function F by application of
Theorem 5. The first step is to obtain the prime impli-
cants of F. Referring to Fig. 4(a), it is obvious that a
logic 0 hazard can not occur; hence only the 1 prime
implicants of F need be considered.

Decompose F by removing xy, %s, %3, and x4, in that
order. The resulting function tree is shown in Fig. 5. The
prime implicants that each F*(g,) correspond to are
identified at the bottom of the tree.

The next step is to obtain n-level realizations and to
assign n-level gaps according to step 3) of Procedure 3.
Since F is not unate, the initial n-level realization must
contain at least two gates. Consider the n-level assign-
ment labeled 4 in Fig. 5, where the n-level realization is

Gy Gi
(fn)un: ;o= <0 + 2<O>u';l";>u3‘ l'(;.

Referring to Definition 12 and assignment 4, the n-
fevel reduced functions labeled 1; are realized by the
n-level 1 branch {Go}, whereas the other n-level reduced
functions which are 1 are realized by the n-level 1
branch {Gi, G,}. Hence a hazard-free threshold realiza-
tion will be obtained if reconstruction is possible. How-
ever, a void common range occurs {or G; on the third
level of reconstruction. Therefore, an additional thresh-
old gate, or gates, must be added to complete reconstruc-
tion. However, before considering the addition of a gate
or gates to correct the void range for Gy, further recon-
struction for Gy will be considered. Referring to Fig. 5,
it is seen that reconstruction of G, can be completed
without any void common range.

Now consider the inconsistency which caused the void
common range for G; on the third level of the tree. Re-
ferring to Fig. S, if the gaps identified by A are increased
by more than 2 the void common range will not occur.
Hence the mn-level gaps for F¢01, 10, 10, 10),
F(01, 10, 10, 01), F*(01, 01, 10, 10), and F*(01, 01, 10, 01)
must be increased by more than 2. Therefore, change
these n-level gaps from 0: — « to 4: — = by adding the
gate G, as input to Gy, where By =4. The n-level assign-
ment for G; and G; labeled B is shown in Fig. 5. The
n-level realization is now

(e = {0+ 200 + 4(0)up:hun:mYusm:n.

Referring to assignment B and the previous assign-
ment for G,, the n-level reduced functions labeled 1,
and 1, are realized by the n-level 1 branch {G,} and
{Gl, Go}, respectively, whereas the other n-level re-
duced functions which are 1 are realized by the n-level 1
branch {Gg, G, Go}. By Theorem 5, if reconstruction is
possible, the final realization will not contain any logic
hazards.
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xax4
00 0r 11 10

1 prime implicants
Pi={plxr=1, x4=0}
P={plri=1, 23=0]
PR={p|x1=0, x3=1}
P ={plxa=0, xs=1}

00
[

X1x2

[P R e =
(=4

[
-l O] =] o
IS

10

(a) ) S

Fig. 4. Karnaugh map for Example 4.

Before continuing, note the following.

1) Since reconstruction was complete for G,, the
image points of P} will be realized by the 1 branch con-
sisting of G, regardless of which gates are added.

2) In this example when the inconsistency is removed
from the third level of Gy, it so happens that the first
condition of Theorem § is also satisfied. This is not true
in general, and in such cases some additional z-level gaps
for Gi must be changed.

The process of reconstruction will now be continued.
Referring to Fig. 5, reconstruction of Gi can now be
completed without any void common ranges. Next con-
sider the reconstruction for G,. A void common range
occurs for G, on the third level of the tree. If the gap,
identified by 6, is increased by any positive amount, the
inconsistency will not occur. Hence the n-level gap of
Fi(10, 01, 01, 10) is increased {from 0 — @ to 2: — e« by
adding G5 as an input to Gy, where 83=2. The n-level
assignment for Gz and Gs labeled C is shown in Fig. 5.
The corresponding #n-level realization is also shown in
Fig. 5. Reconstruction is now possible, the final realiza-
tion being

Frusr= Gz b ixsF 2220 %o 28542y
+42x,4+ &+ 205+ aqF2(EeFxa)e: 14ra) 432 14

Hence from Theorem 5, the realization will not contain
any logic hazards.

Theorem 5 gives a means for obtaining a general
threshold realization which is hazard free. However,
the following special realizations are also of interest.

1) Obviously, if the desired realization can contain
logic 0 hazards, but not logic 1 hazards, then only the 1
prime implicants of F must be contained in the realiza-
tion. Hence in Theorem 5, the #n-level reduced functions
F(g,) which are 0 can be chosen arbitrarily. A similar
statement exists if the realization can contain logic 1
hazards, but not 0 hazards.

2) Eichelberger!® has proved that a sum-of-product
(product-of-sum) realization will not contain any logic
hazards if each 1(0) prime implicaunt of F is realized by
a unique AND (ORr) gate. Consider the case where the

102



103

h

L.OGIC HAZARDS IN THRESHOLD NETWORKS

LD

5 AND COATE

B

HOWE

150 0,®
i nwo 0y
_HWD Ox®
_J_vo Og @
~n%0 0*8
1-=95 240
103738 (40)y
¢
0=¢go 1=y
2=gn L
QioA
CAREY Y-S
aloA
2n1=30 Ol
193735 ({00
I~ nmo ©-,0
=50 2,0
!
f-=zD 240
=90z
123738 (o)
o:50 P-sd
z-2%0  g-gl-
|
z=p 1a€
2n-=90 140
153138 (|o)y

€9
<9
29

o

®

09

29
_OQ
OU@

O 0,® W10 OWOP @D O
0 O 0 WiQ W0 — 00 0@
0100 0,0 ®-10 ©-i0 — ©-i0 Qi@
OiR. 0 4@ 030 V-ip — Wi O
O® 0,0 W= =) — 0~ Oi®

00 Zmy® @37 @-iZ — Q-3 D0 8.,xo [l

0 #| _ A Y 0 b 2 i 0 (p=b) v 3AIT
\ \ \ \ \
0=\ \ m\ &l \ \ \ \ \ \ \_%x
\ \ \ \
L R e ST Vb o 5t 0% -
Ol 0@ @0 B e @0 o g 0l - ®
0l 0@ ®-i0 Bo @ @0 og g i o e o
0l po@ ®ip 10 gey® - ®-:0 0 Ol =10 Oeyl- {0
O 0#8 @-107 jico 14X -0V -0 -0 [} ®@~:10 Q- - i@
2 |y Q=32 o} 0y @ @=iQ Wiz -yl 2 -3 Dyl 0t
SO N N N 99:dn farin Grngni
AN N \ N e e et e (g Pop+oze v
08X\ N N N 1=Ex (€<D) € 3A31
oH =40 1@ on ®-,0 1300
ol 20 13z 2i¢ ®-.0 gim
zig 2-x0 gip 01 2-40 12
132 2142 o/l aniie 212/ 2, .
J 0, 1y <
. S s .
~o //// 2l @ 2 2" (s Exg + P opr Sz Pz Exz 4+ Vx )y
S~ ~< 122x FIUYIRELER
~ ~
12 ol Itz
12 Syl €ip
gy " 1z
r2n 1=40 2z -
o 2,2, €58
- R e A e EL
0=lx T~e— 1= % AEDXIRELER!

*4 9]dwexy J0j UOBZI[Ea] PUE 8913 UOROUN]

— 0@  QIO—— 00 QOQM @0 0 0@ ®-I0
—— QI =0 —— -  QMDZW W=7 00 Q0 0=
— 00 -0 —— @-I0  0I0OP X0 OO Oy® ©-:0
e QN0 (O-ipp e O-ifp D=0 ~— -0 00 Ox® -0
— Q0 =) — W-i0 O=IQ —= =I0 00 00 -0

@0 —— @10 @i — 02 OHO0 20 W=

¢ g
©-y 0 FONVY SINdW! —, TOBWAS IHL ‘2

3iv0 3HL ¥Od po 40 ,3ONVH NOWNOD, 3HL S3IIdWI ({0) & "I 3ION
00 ~— Q0 O -~ Q10 0,:0n 121 N

oo — oo 0@ — o bl p w! v Wy e e (05240504 0)2+0>

00— K Hoo ey Nesl
@10 —— W) OO - QYD & A.v £ P+02+0)
@10 == W10 OI0 —— O

0,.0n !a:
Vol B 012+ 0

=10 — W12 ©-0 0-.0 0:®

2/ 128 (B0 (P2 (x4 Bx)2+ VX + x4 25+ 52 ) o4 Yxek Exz 42 6 4 15202 + Pak Exz/r+ Bx+1x2/D)

NOILVZITv3Yd TTUNId



250

number of 0 prime implicants of /s less than the num-
ber of 1 prime implicants of F (i.e., the number of 1
prime implicants of F is less than the number of 1 prime
implicants of 7). From the previous statement, the
product-of-sum hazard-frec realization requires fewer
gates than the sum-of-product hazard-free realization.
1 the number of 1 prime implicants is less, the sum-of-
product realization would require fewer gates.
Theorem 6 will show that a similar situation exists for
the following type of two-level threshold realization.
Theorem 6: Let { Pi} be the set of 1 prime implicants
of the Boolean function F, and s} the product Boolean
function which realizes the 1 prime implicant P}. Then
the Boolean function # can be expressed as
1 i n
F=si+ -+ s+ +s (10)
chere 1<i<n. If (10) can be expressed as a sum of m
woolean threshold functions
Fp 4 - -+ Fp,, + Fr, (11)
then it can be realized by the two-level positive thresh-
old realization

<fa>llaila = <61FT1 +---F Bm—lFTm—l
-+ ale",‘ R a?lx:>Ua:la

where ;=1 for 1 <j<m—1 and {@we*+ - - - Fauxyhu_a,
realizes Fr,. Moreover, (fo)u. .1, will not contain any
logic hazards.

Proof: Since B; =14, it follows that (11) and hence
F can be realized with m gates. Now consider the logic
hazards.

All of the reduced functions such that Fi(g,)=0 are
realized by the same 0 branch; namely, the 0 branch
which consists of all of the gates contained in (fa) 1.
Thus from Theorem 4, (fa)._.;, will not contain any logic
0 hazards. Obviously, {fe)u .1, will not contain any logic
1 hazards. '

The realization (fo)u 1 is equivalent to a sum-of-
product realization.

Now consider the complement Boolean function F
and express it in the form of (10) and {11), respectively.
Let m* denote the number of Boolean threshold func-
tions obtained in the latter expression. From Sheng,!®
m* will not necessarily equal m; it may be greater or less.
From Theorem 6, there exists a realization (f2).%./
which contains m* gates, realizes F, and does not contain
any logic hazards. There exists a corresponding comple-
ment realization (fi)z*7* which realizes F with m*
gates. Obviously, (j—’:)ﬁ_j;z’: will not contain any logic
hazards.

Therefore, if m*<m, the realization (f2);*7* will
require fewer gates than (fo). .1, whereas if m*>m,
the realization (f.). .1, requires fewer gates.
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3) Theorems 5 and 6 give means for synthesizing
threshold networks which do not contain any logic
hazards. However, from another point of view, they
also enable one to design threshold networks which
contain cerlain specified logic hazards and only those
specified. The utilization of such networks and their
design with conventional-type gates has been considered
by Eichelberger.l¥ ’

4) One of the most common applications of hazard-
free combinational circuits is in the design of asynchro-
nous systems. Moreover, in most asynchronous systems
the assumption is made that only one input variable can
change at a time. When such an assumption is made, it
has been shown that it is not necessary to realize all of
the 1 and 0 prime implicants of F.UL.61 In such a case,
Theorem 5 can be changed accordingly in that the set of
necessary 1 and 0 prime implicants will be a subset of
{PL} and {P}}, respectively.

Arrenpix 1

This appendix contains the possible n-level separating
functions with n-level gaps for two gate and three gate
three-level realizations. The paramecters § <can be se-
lected equal to any number greater than unity. They
should be selected equal to 2 or greater-if it is desired
not to decrease the gap length.! For Table 111, the n-
level realizations are

(0 + ﬁ1<0>u1311>uo:lo
(O —{— 61(0 + BZ<0>u2:lg>uJ:ll>un:lo

where $,, #;, and /; correspond to the gate G..

2 gate
3 gate, 3 level

TABLE 111
Normar Gars

n-level separating function n-level branch

1= <O+61<0>o:~m>ﬂ‘:—m Go, Gl}

1 = <O+ﬁl<0>ac:u>a:—q, Go}

1 = (0 +Bl<0 +ﬁ2<0>a:—m>§2:~—w>ﬁx:.—w Go, Gx, G;}
1= <0+Bl<0‘*'52<0)n:—u>w:ﬁg)n;~w Gy
1=<0+.31<0+BZ<O>z:o)a:_m>Bl:-m tGo, G]}

1 =(0+Bl(0+52<0>=c:o)w:o>n:—w Go}
O=<O+31<O>m:u>ac:a GO) Gl}
0= <O+6L(0>n:—w>a:ﬁl Go
0=<O+BI<O+32<0>w:o)ac:o>ec:a {601 Gly GJ}
0= <O +BI<O +B'Z(O>=c:a)o:w.\w:f’l Gﬂ}

0= (0+81(04B:(0):— ) 18,3 <0 Gy, Gi}
0= (0+ﬁl<0+62<0)a:w}ﬂ2:—.,a)x:5, GD}

Rebucep Gars

n-level separating function n-level branches

(0 +51 (0)0 :—-w)o:—-w

(0 +5.! (0 +ﬁl <O>o:-—c.,)o I )ﬂ‘ —x
(0 +6.’ <O +Bl <0)o femgg )o t—en )u g
(0 +ﬁ‘2<0 "l"lal (O>ga w0 )o :—-m)u )
= (0 +I31 (0)«,3:),,:31

0= <O +ﬁ2<0 +Bl <O)m:v )w:ﬁg)w 0
0= (O '}'132 <n ’*’131 (O>a :o)x :53),5;51
0= (0 +ﬂl<o +Bl <O>a Ty )n:ﬁ: ).x,;dl

{Ga, Gil, {Gol

1Go, Gi, G2}, 1Go, Gi}

1Ga, Gi, G2l 1Go, GhY, [Go]
: Ty G:}v {Gﬂ}‘

{Go Gi} {Gal

1Go Ghy G2b, 16 Gi}

1Go, G Godo 1Ga, Gil, 16t
PPN

T

1
1
1
1
0
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